Aufgaben zur e- und In-Funktion

- 1.0 Gegeben ist die Funktion $f(x) = \frac{2x^2 2}{e^x}$ mit $D_f = \mathbb{R}$. Ihr Graph sei G_f . (Abitur 2008 AI)
- 1.1 Geben Sie die Schnittpunkte von G_f mit den Koordinatenachsen an.
- 1.2 Untersuchen Sie das Verhalten von f(x) für $x \to \pm \infty$ und geben Sie die Gleichung der Asymptote von G_f an.
- 1.3 Bestimmen Sie die Art und die Koordinaten der Extrempunkte von G_f . Runden Sie die Ordinaten auf zwei Nachkommastellen.

(Teilergebnis: $f'(x) = \frac{-2x^2 + 4x + 2}{e^x}$)

- 1.4 Zeichnen Sie G_f unter Verwendung der bisherigen Ergebnisse und der Berechnung weiterer geeigneter Funktionswerte im Intervall [-1,2;6] in ein kartesisches Koordinatensystem.
- 1.5 Zeigen Sie, dass die Funktion $F(x) = -\frac{2(x+1)^2}{e^x}$ mit $D_F = \mathbb{R}$ eine Stammfunktion von f ist und berechnen Sie die exakte Flächenmaßzahl des Flächenstücks, das von G_f und der x-Achse unterhalb der x-Achse eingeschlossen wird.
- 1.6.0 Gegeben ist die Funktion g(x)=In(f(x)) mit maximaler Definitionsmenge $D_g \subset \mathbb{R}$. Ihr Graph ist G_g . Lösen Sie die folgenden Aufgaben möglichst unter Verwendung der Eigenschaften von f. (Aufgaben 1.1-1.4)
- 1.6.1 Geben Sie D_g an und begründen Sie, dass g nur genau eine Nullstelle besitzt. \bigcirc
- 1.6.2 Bestimmen Sie das Verhalten von g an den Rändern von Dg.
- 1.6.3 Untersuchen Sie G_g auf Extrempunkte und geben Sie gegebenenfalls deren Koordinaten und Art an.
- 2.0 Gegeben ist die Funktion k(x)= $8000 \cdot \frac{\ln(0,1x+1)}{0,1x+1}$ in der maximalen Definitionsmenge $D_k \subset \mathbb{R}$. (Abitur 2008 AII)
- 2.1 Bestimmen Sie D_k und die Nullstelle von k. \bigcirc
- 2.2 Untersuchen Sie das Verhalten von k(x) an den Rändern von Dk.

- 2.3.0 Die Funktion k beschreibt für x∈[0;100] in guter Näherung den durchschnittlichen täglichen Energiebedarf einer Person in Deutschland in Kilokalorien (kcal) in Abhängigkeit vom Lebensalter x in Jahren (a). Auf die Angabe von Einheiten wird verzichtet. Runden Sie alle Werte sinnvoll.
- 2.3.1 Bestimmen Sie die Koordinaten und die Art des Extrempunktes von k ohne Verwendung der 2. Ableitung von k. 🕢 (Teilergebnis: k'(x) = $800 \cdot \frac{1 - \ln(0.1x + 1)}{(0.1x + 1)^2}$
- 2.3.2 Zeichnen Sie den Graphen G_k für x∈[0;100] unter Verwendung der bisherigen Ergebnisse sowie der Funktionswerte k(35) und k(100) in ein Koordinatensystem. (Maßstab: x-Achse: 1 cm \triangleq 10a; y-Achse: 1 cm \triangleq 500 kcal)
- 2.3.3 Zeigen Sie, dass $K(x) = 40000 \cdot \left[\ln(0.1x+1) \right]^2$ mit $D_K = D_k$ eine Stammfunktion von k ist und berechnen Sie $I = \int_{0}^{80} k(x) dx$.
- 2.3.4 Berechnen Sie mit Hilfe des Ergebnisses von 2.3.3 den mittleren täglichen Energiebedarf einer 80-jährigen Person im Laufe ihres Lebens. Zeichnen Sie diesen Wert sinnvoll in die Zeichnung von 2.3.2 ein und ermitteln Sie graphisch, in welchem Lebensalter dieser mittlere Energiebedarf benötigt wird. 🕢
- 3.0 Gegeben ist die Funktion $g(x) = \ln \left(\frac{x}{2x-3} \right)$ in der maximalen Definitionsmenge $D_{_{g}} \subset \mathbb{R}$. Ihr Graph ist $G_{g}.$ (Abitur 2010 AI)
- 3.1 Begründen Sie, dass gilt: $D_g = \mathbb{R} \setminus [0;1,5]$.
- 3.2 Untersuchen Sie das Verhalten von g an den Rändern von Dg. 🕢
- 3.3 Geben Sie die Gleichungen aller Asymptoten von Gg an und berechnen Sie die Nullstelle von g. \bigcirc
- 3.4 Bestimmen Sie die maximalen Monotonieintervalle von Gg. 🕢 (Zur Kontrolle: g'(x)= $\frac{-3}{x(2x-3)}$)
- 4.0 Gegeben ist die Funktion $f(x) = (x^2 2x + 1) \cdot e^{2x}$, $D_f = \mathbb{R}$. Ihr Graph ist G_f . (Abitur 2010 AII)
- 4.1 Untersuchen Sie das Symmetrieverhalten und berechnen Sie die Koordinaten der Achsenschnittpunkte von G_f . Bestimmen Sie das Verhalten von f(x) für $|x| \to \infty$ und geben Sie die Gleichung der horizontalen Asymptote von Gf an.

(Zur Kontrolle: $f'(x) = 2(x^2 - x) \cdot e^{2x}$)

- 4.2 Ermitteln Sie die maximalen Intervalle, in denen die Funktion f echt monoton zunehmend bzw. echt monoton abnehmend ist, und bestimmen Sie die Art und die Koordinaten der Extrempunkte von G_f.
- 4.3 Zeichnen Sie Gf unter Verwendung der bisherigen Ergebnisse und der Berechnung weiterer geeigneter Funktionswerte für $x \in [-1,3;1,3]$ in ein kartesisches Koordinatensystem (Maßstab auf beiden Achsen: 1 LE = 5 cm)
- 4.4 Gegeben ist die Funktion $F(x) = \frac{1}{2}(x^2 + bx + c) \cdot e^{2x}$ b, $c \in \mathbb{R}$ $D_F = D_f$. Bestimmen Sie b und c so, dass F eine Stammfunktion von f ist. Kennzeichnen Sie die Fläche, die Gf mit den Koordinatenachsen im ersten Quadranten einschließt und berechnen Sie die exakte Maßzahl des Flächeninhalts. 🕢 (Teilergebnis: b = -3, c = 2,5)
- 5.0 Gegeben ist die Funktion $f(x) = \ln \left(\frac{x^2}{x+2} \right)$ mit der maximalen Definitionsmenge $D(f) \subset \mathbb{R}$. Der Graph der Funktion f heißt G(f). (Abitur 2006 AI)
- 5.1 Geben Sie D(f), das Verhalten von f(x) für $x \rightarrow 0, x \rightarrow -2$ und für $x \rightarrow +\infty$ sowie die Gleichungen aller Asymptoten von G(f) an.
- 5.2 Berechnen Sie die Nullstellen der Funktion f.
- 5.3 Ermitteln Sie rechnerisch die maximalen Intervalle, in denen die Funktion f echt monoton zunehmend bzw. echt monoton abnehmend ist. 🕢

(Zur Kontrolle:
$$f'(x) = \frac{x+4}{x^2+2x}$$
)

- 5.4 Zeichnen Sie den Graphen G(f) und seine Asymptoten für $-2 < x \le 5$ unter Verwendung der bisherigen Ergebnisse und nach der Berechnung weiterer geeigneter Funktionswerte in ein kartesisches Koordinatensystem.
- 6.0 Gegeben ist die Funktion $f(x) = x^2 \cdot \ln(x)$ in der größtmöglichen Definitionsmenge $D_{\iota} \subset \mathbb{R}$. Ihr Graph wird mit G_f bezeichnet. (Abitur 2006 AII)
- 6.1 Geben Sie D_f an und bestimmen Sie die Nullstelle von f.
- 6.2 Ermitteln Sie das Monotonieverhalten von Gf und daraus die Art und die Koordinaten seines Extrempunktes.

(Zur Kontrolle: $f'(x) = x \cdot (2\ln(x) + 1)$)

- 6.3 Bestimmen Sie das Verhalten von f(x) und der Ableitungsfunktion f'(x) für $x \rightarrow 0$.
- 6.4 Untersuchen Sie, ob G_f einen Wendepunkt besitzt. Begründen Sie Ihre Aussage nur unter Verwendung der bisherigen Ergebnisse ohne Berechnung der 2. Ableitung und geben Sie gegebenenfalls das Intervall an, in dem die Wendestelle liegt.
- 6.5 Zeichnen Sie G_f unter Berücksichtigung der bisherigen Ergebnisse für 0 < x ≤ 1,5 in ein kartesisches Koordinatensystem. Beachten Sie dabei insbesondere das Verhalten von G_f für x→0. (Maßstab: 1 LE = 5 cm) ○
- 7.0 Gegeben ist die Funktion $f(x) = 2 \cdot ln \left(\left(x + 2 \right)^2 + 4 \right)$ in der größtmöglichen Definitionsmenge $D_f \subseteq \mathbb{R}$. Ihr Graph wird mit G_f bezeichnet. (Abitur 2009 AI)
- 7.1 Bestimmen Sie D_f, untersuchen Sie die Funktion auf Nullstellen und bestimmen Sie ihr Verhalten an den Rändern der Definitionsmenge.
- 7.2 Untersuchen Sie G_f auf Punkte mit horizontaler Tangente (Koordinaten und Art). (Teilergebnis: $f'(x) = \frac{4x+8}{x^2+4x+8}$)
- 7.3 Ermitteln Sie die Koordinaten der Wendepunkte von G_f und bestimmen Sie die Gleichung der Wendetangente in dem Wendepunkt, der auf der y-Achse liegt.
- 7.4 Zeichnen Sie G_f unter Verwendung der bisherigen Ergebnisse für -8 \leq x \leq 4 in ein kartesisches Koordinatensystem. Tragen Sie auch die Wendetangente aus Aufgabe 7.3 in Ihre Zeichnung ein. \bigcirc
- 8.0 Gegeben ist die Funktion $g(x) = 4 \cdot ln(x) \cdot (2 lnx)$ in ihrer größtmöglichen Definitionsmenge $D_g \subset \mathbb{R}$. Ihr Graph wird mit G_g bezeichnet. (Abitur 2009 AII)
- 8.1 Geben Sie D_g an, berechnen Sie alle Nullstellen von g und untersuchen Sie das Verhalten von g an den Rändern von D_g .
- 8.2 Ermitteln Sie das Monotonieverhalten von g und bestimmen Sie daraus die Koordinaten und die Art des Extrempunktes von G_g .

(Teilergebnis: g'(x) =
$$\frac{8 \cdot (1 - \ln x)}{x}$$
)

- 9.0 Gegeben ist die Funktion $f: x \mapsto \ln \frac{x-2}{3x}$ mit der maximalen Definitionsmenge $D(f) \subset \mathbb{R}$. Ihr Graph wird mit G(f) bezeichnet. (Abitur 2005 AI)
- 9.1 Zeigen Sie, dass gilt: $D(f) = \mathbb{R} \setminus [0;2]$. Untersuchen Sie das Verhalten von f(x) an den Rändern von D(f), geben Sie die Gleichungen aller Asymptoten von G(f) an und berechnen Sie die Nullstelle von f.
- 9.2 Bestimmen Sie das Monotonieverhalten von f. 🕢

(Teilergebnis:
$$f'(x) = \frac{2}{x^2 - 2x}$$
)

- 9.3 Zeichnen Sie G(f) unter Verwendung der bisherigen Ergebnisse und nach Berechnung geeigneter Funktionswerte für -5 ≤ x ≤ 7 in ein kartesisches Koordinatensystem.

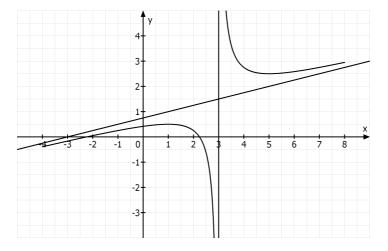
 (1 LE = 1 cm) ○
- 9.4 Die Funktion F:x→F(x) mit D(F) = D(f) ist eine Stammfunktion von f. Ermitteln Sie unter Verwendung bisheriger Ergebnisse die Abszisse und die Art des Extrempunktes und das Krümmungsverhalten des Graphen von F.
- 10.0 Gegeben ist die Funktion $g(x)=In\left(\frac{(x-2)^2}{x-1}\right)$ in ihrer maximalen Definitionsmenge $D_{_g}\subset\mathbb{R}$. Ihr Graph ist G_g . (Abitur 2011 AI)
- 10.1 Bestimmen Sie D_g , untersuchen Sie das Verhalten von g(x) an den Rändern von D_g und geben Sie die Gleichungen aller Asymptoten von G_g an.
- 10.2 Bestimmen Sie die Nullstellen von g und skizzieren Sie den Graphen G_g in ein Koordinatensystem. \bigcirc
- 11.0 Gegeben ist die Funktion h mit $h(x)=(x-4)\cdot \ln(x-3)$ in der größtmöglichen Definitionsmenge $D_h \subset \mathbb{R}$. Der Graph von h wird mit G_h bezeichnet. (Abitur 2011 AII)
- 11.1 Bestimmen Sie D_h und die Nullstelle von h sowie deren Vielfachheit. Untersuchen Sie das Verhalten von h(x) an den Rändern von D_h und geben Sie die Gleichung der Asymptote von G_h an. \bigcirc
- 11.2 Weisen Sie nach, dass G_h an der Stelle x = 4 einen Punkt mit waagrechter Tangente besitzt. Untersuchen Sie das Krümmungsverhalten von G_h, schließen Sie daraus auf die Art des Extrempunktes von G_h und geben Sie die Wertemenge von h an.

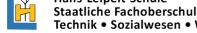
(Teilergebnis:
$$h''(x) = \frac{x-2}{(x-3)^2}$$
)

11.3 Zeichnen Sie die Asymptote von G_h in ein Koordinatensystem und skizzieren Sie G_h mit Hilfe der bisherigen Ergebnisse in ein Koordinatensystem.

- 12 Gegeben ist die Funktion $g(x)=\ln(\widetilde{f}(x))$ mit $\widetilde{f}(x)=\frac{x+2}{2x-2}$ in der maximalen Definitionsmenge $D_g \subset \mathbb{R}$. (Abitur 2012 AI)

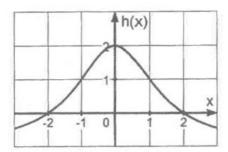
 Geben Sie D_g an und bestimmen Sie die Nullstelle von g. \bigcirc
- 13.0 Gegeben ist die reelle Funktion $f(x) = \frac{2 \cdot \ln(x) + 1}{x}$ in der maximalen Definitionsmenge $D_{_f} \subset \mathbb{R}$. Ihr Graph ist G_f . (Abitur 2012 AII)
- 13.1 Bestimmen Sie D_f und die Nullstellen von f. Untersuchen Sie das Verhalten von f(x) an den Rändern von D_f und geben Sie die Gleichungen aller Asymptoten von G_f an.
- 13.2 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f und bestimmen Sie die Art und die exakten Koordinaten des Extrempunktes von G_f . (Zur Kontrolle: $f'(x) = \frac{-2 \cdot ln(x) + 1}{x^2}$)
- 13.3 Nehmen Sie ohne weitere Rechnung, aber mit Begründung, Stellung zu der Aussage: "Der Graph Gf besitzt einen Wendepunkt."
- 13.4 Skizzieren Sie G_f unter Verwendung der bisherigen Ergebnisse in ein kartesisches Koordinatensystem. \bigcirc
- 14.0 Gegeben ist die Funktion $g:x\mapsto In\left(\frac{x^2-5}{4(x-3)}\right)$ in der maximalen Definitionsmenge $D_g \subset \mathbb{R}$ gegeben. Ihr Graph ist G_g . (Abitur 2013 AI)
- 14.1 Begründen Sie anhand der folgenden Zeichnung, dass gilt: $D_g = \left] -\sqrt{5}; \sqrt{5} \right[\cup \left] 3; \infty \right[$. Untersuchen Sie g auf Nullstellen und geben Sie das Verhalten von g an den Rändern von D_g an.





- 14.2 Ermitteln Sie gegebenenfalls mithilfe bisheriger Ergebnisse die Extremstellen von Gg und deren Art. 🕢
- 15.0 Gegeben ist die Funktion $h: x \mapsto 10 \cdot (2 \ln(x))^2$ in der maximalen Definitionsmenge $\boldsymbol{D}_{\!_{h}} \subset \mathbb{R}$. Der Graph von h wird mit G_h bezeichnet. (Abitur 2013 AII)
- 15.1 Bestimmen Sie Dh sowie die Lage und die Vielfachheit der Nullstelle von h und untersuchen Sie das Verhalten von h an den Rändern von Dh. (
- 15.2 Begründen Sie nur mithilfe der bisherigen Ergebnisse ohne weitere Berechnungen, dass die Nullstelle der Funktion h ein Tiefpunkt von G_h ist.
- 15.3 Ermitteln Sie die Koordinaten des Wendepunktes von Gh. 🕢 (Teilergebnis: h''(x) = $-20 \cdot \frac{\ln(x) - 3}{x^2}$)
- 15.4 Skizzieren Sie G_h für $0 < x \le 24$ in ein Koordinatensystem. \bigcirc (Maßstab: $1LE \stackrel{\triangle}{=} 0,5cm$)
- 16.0 Gegeben ist die Funktion $f: x \mapsto \left(\frac{1}{4}x^2 + x + 2\right) \cdot e^{-0.5x}$ mit $D_f = \mathbb{R}$. Ihr Graph wird mit G_f bezeichnet. (Abitur 2014 AI)
- 16.1 Untersuchen Sie f auf Nullstellen und das Verhalten von f(x) für $x \to \pm \infty$. \bigcirc
- 16.2 Bestimmen Sie die maximalen Monotonieintervalle von Gf sowie Art und Koordinaten der Punkte mit horizontalen Tangenten. Untersuchen Sie Gf auch auf Wendepunkte. (Teilergebnis: $f'(x) = -\frac{1}{9}x^2 \cdot e^{-0.5x}$)
- 16.3 Bestimmen Sie die Gleichung der Tangente t an den Graphen Gf im Punkt P(-2/f(-2)). (Ergebnis: $t:y=-0.5e \cdot x$)
- 16.4 Zeichnen Sie Gf und die Tangente aus 16.3 unter Verwendung der bisherigen Ergebnisse für $-3 \le x \le 7$ in ein kartesisches Koordinatensystem. (1 LE = 1 cm)
- 16.5.1 Berechnen Sie die reellen Werte von a und b so, dass die Funktion $F:x\mapsto (-0.5x^2+ax+b)\cdot e^{-0.5x}$ mit $D_F=\mathbb{R}$ eine Stammfunktion von f wird. (Ergebnis: a = -4; b = -12)
- 16.5.2 Die Tangente t aus 16.3, der Graph Gf und die y-Achse schließen im II. Quadranten ein Flächenstück ein. Kennzeichnen Sie das Flächenstück in der Zeichnung von 16.4 und berechnen Sie die exakte Maßzahl des Flächeninhalts.

17.0 In der untenstehenden Zeichnung ist der Graph einer gebrochenrationalen Funktion $h:x\mapsto h(x)$ dargestellt. Für die Funktion g gilt: g(x)=ln(h(x)). (Abitur 2014 AI)



- 17.1 Bestimmen Sie aus der Zeichnung die maximale Definitionsmenge $D_g \subset \mathbb{R}$ von g und geben Sie das Verhalten von g(x) an den Rändern von D_g sowie die Nullstellen von g an. \bigcirc
- 17.2 Untersuchen Sie den Graphen von g auf Extrempunkte und geben Sie deren Art und Koordinaten an.
- 18 Gegeben ist die reelle Funktion h durch h(x)=ln(g(x)) mit x∈D_h. Dabei ist g eine quadratische Funktion, deren Graph eine nach oben geöffnete Parabel ist, die zwei verschiedene Schnittpunkte mit der x-Achse besitzt. Entscheiden Sie, ob die nachfolgenden Aussagen wahr oder falsch sind, und begründen Sie jeweils Ihre Aussagen. (Abitur 2014 AII) 🕜
 - a) Für die Definitionsmenge gilt: $D_h = \mathbb{R}$.
 - b) Die Funktion h besitzt genau zwei Nullstellen.
 - c) Der Graph von h besitzt genau einen Extrempunkt.
- 19.0 Gegeben ist die Funktion $g: x \mapsto ln(ax^2 + bx)$ in ihrer maximalen Definitionsmenge $D_g \subset \mathbb{R}$. g besitzt eine Nullstelle bei $x_N = 2$ und eine Extremstelle $x_E = 3$. (Abitur 2015 AI)
- 19.1 Berechnen Sie die Werte a und b.

(Ergebnis:
$$a = -\frac{1}{8}; b = \frac{3}{4}$$
)

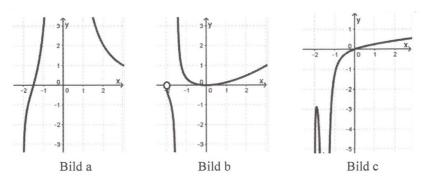
- 19.2 Bestimmen Sie die Art des Extrempunktes des Graphen von g. 🔘
- 20.0 Gegeben ist die Funktion $g:x\mapsto In\left(\frac{x^2+1}{2-x}\right)$ in der maximalen Definitionsmenge $D_g\subset\mathbb{R}$. (Abitur 2015 AII)
- 20.1 Bestimmen Sie D_g und untersuchen Sie das Verhalten von g an den Grenzen der Definitionsmenge. \bigcirc

- 20.2 Berechnen Sie die Nullstellen von g. (
- 20.3 Weisen Sie nach, dass der Graph von g einen Extrempunkt besitzt und geben Sie dessen Art und Koordinaten an.
- 21 Gegeben ist die Funktion $h: x \mapsto ln(g(x))mit g(x) = x^3 + x^2 und D_g = \mathbb{R}$, folglich ergibt sich: $h(x) = ln(x^3 + x^2)$.

Bestimmen Sie die maximale Definitionsmenge $D_h \subset \mathbb{R}$ der Funktion h sowie das Verhalten der Funktion h an den Rändern ihrer Definitionsmenge. (Abitur 2016 AII)

- 22.0 Gegeben ist die Funktion $k: x \mapsto \frac{x^2}{4 \ln(2x+4)}$, ihre Ableitungsfunktion k' und die Funktion $h: x \mapsto \frac{1}{k(x)}$ jeweils in ihren maximalen reellen Definitionsmengen. (Abitur 2017 AII)
- 22.1 Zeigen Sie rechnerisch, dass für die Funktion k gilt: $D_k = -2; \infty \left[\left\{ -1,5 \right\} \right]$.

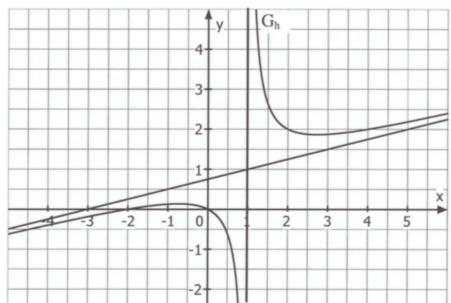
22.2 Ordnen Sie jedem Graphen der Bilder a, b und c einer der Funktionen k, k' oder h zu und begründen Sie Ihre Wahl.



- 22.3 Untersuchen Sie das Verhalten der Funktionswerte von k(x) für $x \rightarrow \infty$.
- 23.0 Gegeben ist die reelle Funktion f durch $f(x)=(x^2-2x-3)e^{-0,5x}=(x+1)(x-3)e^{-0,5x}$ mit der maximalen Definitionsmenge $D_f=\mathbb{R}$. Ihr Graph ist G_f . Runden Sie Ihre Ergebnisse gegebenenfalls auf zwei Nachkommastellen. (Abitur 2018 AI)
- 23.1 Geben Sie die Nullstellen der Funktion f an und untersuchen Sie das Verhalten der Funktionswerte f(x) für $x \to +\infty$ und $x \to -\infty$.
- 23.2 Berechnen Sie Art und Koordinaten aller Extrempunkte von G_f . (mögliches Teilergebnis: $f'(x) = -0.5(x^2 6x + 1)e^{-0.5x}$)
- 23.3 Zeichnen Sie G_f für $-2 \le x \le 12$ unter Verwendung vorliegender Ergebnisse in ein kartesisches Koordinatensystem.

(Teilergebnis: $x_1 = -2$ und $x_2 = 4$)

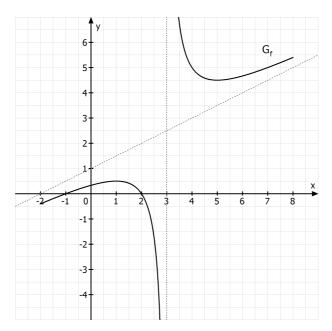
- 23.4 Gegeben ist die Funktion $g:x\mapsto 5e^{-0.5x}$. Ihr Graph ist G_g . Berechnen Sie die Koordinaten der Schnittpunkte der Graphen G_f und G_g und zeichnen Sie den Graphen G_g in das Koordinatensystem der Teilaufgabe 23.3 ein.
 - 23.5 Zeigen Sie, dass die Funktion $F: x \mapsto F(x) = -2e^{-0.5x}(x+1)^2$ mit $D_f = D_F$ eine Stammfunktion der Funktion f ist.
 - 23.6 Die Graphen G_f und G_g schließen ein endliches Flächenstück ein, das in allen vier Quadranten liegt. Schraffieren Sie dieses im Koordinatensystem der Teilaufgabe 23.3 und berechnen Sie die zugehörige Flächenmaßzahl auf zwei Nachkommastellen gerundet.
 - 24 Die Abbildung zeigt den Graphen einer gebrochen-rationalen Funktion $h: x \mapsto h(x) = 0.25x + 0.75 + \frac{0.75}{x-1}, \ D_{h,max} \subset \mathbb{R} \ \text{mit seiner schiefen Asymptote}$ $y = 0.25x + 0.75 \ \text{und der weiteren Asymptote} \ x = 1. \ \text{(Abitur 2018 AI)}$



Gegeben ist nun die Funktion k mit k(x)=ln(h(x)) in ihrer maximalen Definitionsmenge $D_{_k} \subset \mathbb{R}$. Ihr Graph ist G_k .

Geben Sie die Definitionsmenge D_k von k und die Gleichungen der senkrechten Asymptoten von G_k an.

25 Der Graph G_g mit $g(x) = \frac{1}{2}x + 1 + \frac{2}{x - 3}$ mit $D_g = \mathbb{R} \setminus \left\{3\right\}$ schließt mit der x-Achse ein endliches Flächenstück ein (siehe auch nachfolgende Zeichnung). (Abitur 2018 AII) Berechnen Sie die Maßzahl dessen Flächeninhalts.

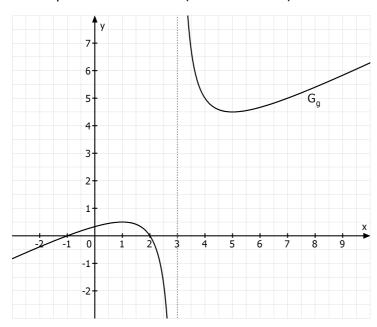


26.0 Betrachtet wird nun die Funktion $h: x \mapsto ln(2 \cdot g(x))$ in der Definitionsmenge

$$D_{_{h}} = \left] -1; 2 \right[\, \cup \, \left] 3; \infty \right[\text{ , wobel g gegeben ist durch } g(x) = \frac{1}{2} x + 1 + \frac{2}{x-3} \text{ mit } D_{_{g}} = \mathbb{R} \setminus \left\{ 3 \right\}$$

(Graph von g siehe untenstehende Abbildung).

Der Graph von h heißt Gh. (Abitur 2018 AII)

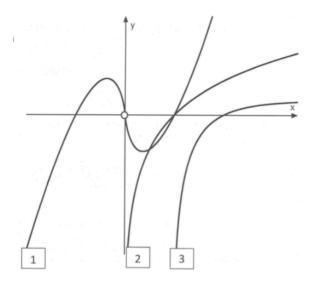


- 26.1 Ermitteln Sie das Verhalten der Funktionswerte h(x) bei Annäherung an die Grenzen der Definitionsmenge.
- 26.2 Zeigen Sie, dass für die Wertemenge von h gilt: $W_h = \mathbb{R} \setminus]0; ln(9)[$. Verwenden Sie dazu die gegebene Abbildung von g. \bigcirc
- 27.0 Gegeben ist die reelle Funktion h mit $h(x) = \ln(-x^2 + 2x)$ und der maximalen Definitionsmenge $D_h = 0.2$. Ihr Graph wird mit G_h bezeichnet. (Abitur 2019 AI)
- 27.1 Bestimmen Sie die Nullstelle von h. Untersuchen Sie das Verhalten der Funktionswerte von h an den Rändern der Definitionsmenge.
- 27.2 Ermitteln Sie die maximalen Monotonie
intervalle und bestimmen Sie die Art und Koordinaten des Extrempunktes von $\, G_h \, . \, \bigcirc \,$

28.0 Gegeben sind in ihren maximalen Definitionsmengen die reellen Funktionen

$$f: x \mapsto ln(x)$$
, $g: x \mapsto x \cdot ln(x^2)$ und $h: x \mapsto \frac{1}{x} \cdot ln(x-1)$

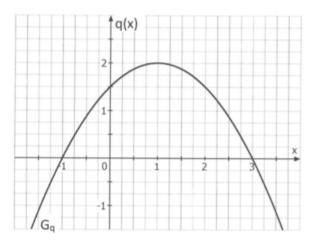
Die Abbildung zeigt die Graphen der Funktionen f, g und h. (Abitur 2020 Teil 1)

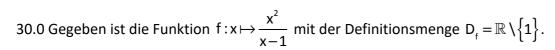


- 28.1 Ordnen Sie jeder Funktion den richtigen Graphen zu und geben Sie zu allen drei Funktionen jeweils die Definitionsmenge an.
- 28.2 Graph 1 und Graph 2 schließen im IV. Quadranten eine endliche Fläche ein. Beschreiben Sie ohne die Rechnungen durchzuführen, wie Sie die Maßzahl dieser Flächen ermitteln können.
- Die Abbildung zeigt den Graphen der quadratischen Funktion q mit dem Scheitel S(1|2). Für die Funktion r gilt: $r(x) = e^{q(x)}$.

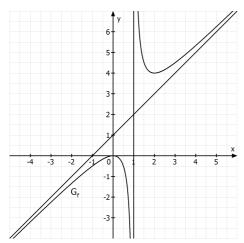
Für beide Funktionen gilt: $D_q = D_r = \mathbb{R}$.

Bestimmen Sie mithilfe der Abbildung die Wertemenge der Funktion r. Begründen Sie dabei Ihre Vorgehensweise. (Abitur 2020 Teil 1)





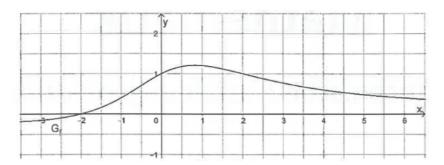
Der Graph der Funktion f heißt $\,{\rm G_f}$. Untenstehende Abbildung zeigt einen Teil von $\,{\rm G_f}$ mit seinen beiden Asymptoten.



Betrachtet wird nun die reelle Funktion $g:x\mapsto ln\Big(f(x)\Big)=ln\bigg(\frac{x^2}{x-1}\bigg)$ mit der maximalen Definitionsmenge $D_g=\Big]1;+\infty\Big[$. Der Graph von g wird mit G_g bezeichnet. (Abitur 2020 Teil 2 AI)

- 30.1 Entscheiden Sie, ob die Funktion g Nullstellen besitzt und begründen Sie Ihre Entscheidung.
- 30.2 Untersuchen Sie das Verhalten der Funktionswerte von g an den Rändern der Definitionsmenge und geben Sie die Gleichung der Asymptote von $\,G_{\rm g}\,$ an. $\,\bigcirc$
- 30.3 Bestimmen Sie Art und Koordinaten des Extrempunktes von $G_{\rm g}$. \bigcirc
- 30.4 Zeichnen Sie den Graphen G_g und seine Asymptoten unter Verwendung der bisherigen Ergebnisse und weiterer geeigneter Funktionswerte für $1 < x \le 6$ in ein kartesisches Koordinatensystem. \bigcirc
- 30.5 Gegeben ist die Stammfunktion $G: x \mapsto -x + 2x \cdot \ln(x) (x-1) \cdot \ln(x-1)$ mit $D_G =]1; +\infty[$ der Funktion g (Nachweis nicht erforderlich). Berechnen Sie die Maßzahl des Flächenstücks, das von G_g , der x-Achse sowie den beiden Geraden mit den Gleichungen x = 2 und x = 3 eingeschlossen wird. Runden Sie Ihr Ergebnis auf zwei Nachkommastellen und kennzeichnen Sie das Flächenstück im Koordinatensystem der Teilaufgabe 30.4. \bigcirc

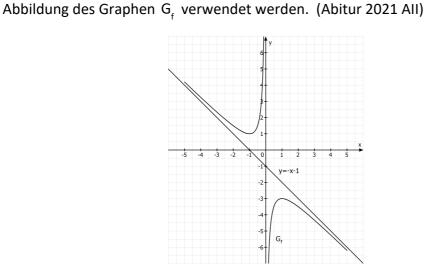
31.0 In der untenstehenden Abbildung ist ein Ausschnitt des Graphen G_f einer gebrochenrationalen Funktion f mit der Definitionsmenge $D_f = \mathbb{R}$ dargestellt. G_f besitzt den absoluten Hochpunkt H(0,8|f(0,8)), ist im Intervall $\begin{bmatrix} 0,8;\infty \end{bmatrix}$ streng monoton fallend und besitzt die x-Achse als waagrechte Asymptote. Für die Funktion h gilt: $h(x) = \ln(f(x))$. Die maximale Definitionsmenge der Funktion h ist $D_h =]-2;\infty[$. (Abitur 2021 Teil 1)



- 31.1 Geben Sie das Verhalten der Funktionswerte von han den Rändern von D, an.
- 31.2 Geben Sie mithilfe der Abbildung die Nullstellen der Funktion h an. Die abzulesenden Werte sind ganzzahlig.
- 31.3 Begründen Sie, dass der Graph der Funktion h genau einen Extrempunkt hat und geben Sie die Art sowie die x-Koordinate dieses Extrempunktes an.
- Gegeben ist die Funktion $k:x\mapsto \frac{x+1}{e^x-1}$ mit ihrer maximalen Definitionsmenge $D_k=\mathbb{R}\setminus \left\{0\right\}$. Entscheiden Sie begründet, welche der folgenden Aussagen jeweils wahr oder falsch sind. (Abitur 2021 Teil 1)
 - a) Der Graph der Funktion k hat eine senkrechte Asymptote
 - b) $x \rightarrow -\infty \implies k(x) \rightarrow -1$
- 33 Gegeben ist die Funktion $f:x\mapsto \frac{6x+12}{x^2+4x+6}$ mit der Definitionsmenge $D_f=\mathbb{R}$. Der zugehörige Graph wird mit G_f bezeichnet. Zeigen Sie, dass die Funktion $F:x\mapsto 3ln\big(x^2+4x+6\big)$ mit $D_F=\mathbb{R}$ eine Stammfunktion von f ist.

Berechnen Sie den Wert des bestimmten Integrals $\int_{-4}^{0} f(x)dx$ und interpretieren Sie das Ergebnis geometrisch. (Abitur 2021 AI)

34.0 Gegeben ist die Funktion $f: x \mapsto \frac{-x^2 - x - 1}{x}$ mit der Definitionsmenge $D_f = \mathbb{R} \setminus \left\{0\right\}$. Der Graph von f wird mit G_f bezeichnet. Es wird nun die Funktion $g: x \mapsto ln \Big(f(x)\Big)$ mit ihrer maximalen Definitionsmenge $D_g \subset \mathbb{R}$ betrachtet. Der Graph von g wird mit G_g bezeichnet. Zur Beantwortung der folgenden Teilaufgaben kann die untenstehende



- 34.1 Geben Sie D_g an und bestimmen Sie die Nullstelle der Funktion g. \bigcirc
- 34.2 Ermitteln Sie die Art und Koordinaten des Extrempunkts von G_g und zeichnen Sie G_g in die Abbildung von 34.0 ein.
- 35.0 Gegeben ist die Funktion $f: x \mapsto 2x \cdot ln(x+3)$ mit ihrer maximalen Definitionsmenge $D_f = \left] -3; \infty \right[\text{ . (Abitur 2022 Teil 1)}$
- 35.1 Untersuchen Sie das Verhalten der Funktionswerte von f an den Rändern der Definitionsmenge $D_{\rm f}$. \bigcirc
- 35.2 Ermitteln Sie die Nullstellen der Funktion f. 🔘
- 36.0 Gegeben ist die Funktion $f: x \mapsto -1 + \left(\ln(x) \right)^2 \text{ mit der Definitionsmenge } D_f = \left] 0; \infty \right[$. Der Graph der Funktion f wird mit G_f bezeichnet. (Abitur 2022 AII)
- 36.1 Zeigen Sie, dass $x_1 = e^{-1}$ und $x_2 = e$ die einzigen Nullstellen von f sind. Bestimmen Sie auch das Verhalten der Funktionswerte von f an den Rändern des Definitionsbereiches und die Gleichung der senkrechten Asymptote von G_{ϵ} .

- 36.2 Ermitteln Sie die maximalen Monotonieintervalle sowie die Art und die Koordinaten des absoluten Extrempunktes von G_f . Geben Sie auch die Wertemenge der Funktion f an. (mögliches Teilergebnis: $f'(x) = \frac{2\ln(x)}{x}$)
- 36.3 Bestimmen Sie die exakte Gleichung der Wendetangente an den Graphen G_f .
- 36.4 Zeichnen Sie den Graphen G_f unter Berücksichtigung aller bisherigen Ergebnisse und weiterer geeigneter Funktionswerte im Bereich 0 < x ≤ 5,5 in ein kartesisches Koordinatensystem.

 Maßstab auf beiden Achsen: 1 LE = 2 cm
- 37.0 Gegeben ist die Funktion $f:x\mapsto \frac{1}{x+1}+ln\big(x+1\big)$ mit ihrer maximalen Definitionsmenge $D_f\subset\mathbb{R}$. Der Graph von f wird mit G_f bezeichnet. (Abitur 2023 AI)
- 37.1 Zeigen Sie, dass die Funktion f die maximale Definitionsmenge $D_f = -1; \infty$ besitzt. \bigcirc
- 37.2 Ermitteln Sie die maximalen Monotonieintervalle der Funktion f und die Art sowie die Koordinaten des einzigen Extrempunktes von G_f .

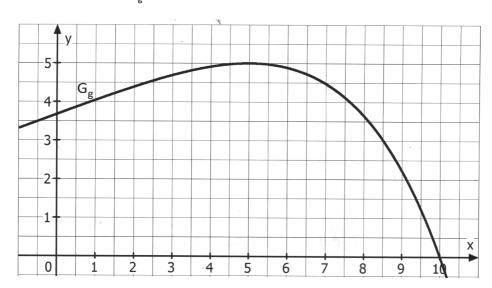
(mögliches Teilergebnis:
$$f'(x) = \frac{x}{(x+1)^2}$$
)

- 37.3 Ermitteln Sie die Koordinaten des Wendepunktes von G_f . (mögliches Teilergebnis: $f^{\prime\prime}(x) = \frac{-x+1}{\left(x+1\right)^3}$)
- 37.4 Der Graph G_f besitzt die senkrechte Asymptote x = -1. Zeichnen Sie G_f im Bereich $-1 < x \le 6$ unter Verwendung vorliegender Ergebnisse und weiterer geeigneter Funktionswerte sowie die senkrechte Asymptote in ein kartesisches Koordinatensystem. Geben Sie auch die Wertemenge der Funktion f an. Maßstab auf beiden Achsen: 1 LE = 1 cm
- 37.5 Die Funktion $F: x \mapsto (x+2) \cdot \ln(x+1) x$ ist in ihrer Definitionsmenge $D_F = D_f$ eine Stammfunktion von f (Nachweis nicht nötig !!). \bigcirc Zeigen Sie, dass gilt: $\int_0^5 f(x) dx \approx 7,54$.
- 37.6 Markieren Sie in der Zeichnung aus Teilaufgabe 37.4 die beiden Flächenstücke, deren Flächenmaßzahlen A, bzw. A, durch folgende Integrale berechnet werden können:

$$A_1 = \int_0^5 (f(x)-1)dx$$
 $A_2 = \int_0^5 (2-f(x))dx$

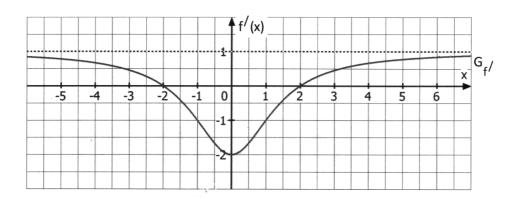
Ermitteln Sie A₁ auf zwei Nachkommastellen gerundet.

38.0 Unten abgebildet ist ein Ausschnitt des Graphen $\,G_{g}\,$ der Funktion g mit der maximalen Definitionsmenge $\,D_{g}=\mathbb{R}\,$. (Abitur 2024 Teil 1)



- 38.1 Geben Sie jeweils an, ob die folgenden Terme Werte haben, die größer, kleiner oder gleich Null sind:
 a) g(10)
 b) g''(5)
- 38.2 Bestimmen Sie anhand der Abbildung graphisch die Steigung der Tangente an G_g im Punkt P(7|g(7)). Veranschaulichen Sie Ihr Vorgehen in obiger Abbildung durch ein geeignetes Steigungsdreieck.
- 38.3 Die Funktion g ist durch die Gleichung $g(x) = -(x-10) \cdot e^{0,2x-1}$ gegeben. Weisen Sie nach, die Funktion $G: x \mapsto -(5x-75) \cdot e^{-0,2x-1}$ mit $D_G = \mathbb{R}$ eine Stammfunktion von g ist. \bigcirc
- 38.4 Berechnen Sie die ungerundeten Funktionswerte G(5) und G(10). Markieren Sie in der Abbildung aus 38.0 das Flächenstück, dessen Flächenmaßzahl gleich der Differenz G(10)-G(5) ist und geben Sie die Maßzahl exakt an. \bigcirc

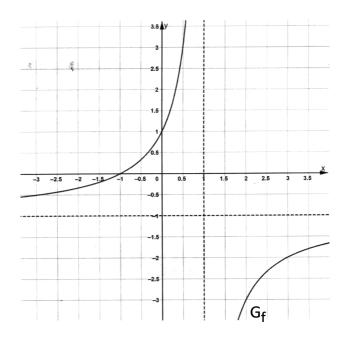
39.0 In untenstehendem Diagramm ist ausschnittsweise der Graph $G_{f'}$ der ersten Ableitungsfunktion f' einer Funktion f abgebildet. f und f' besitzen die maximalen Definitionsmengen $D_f = D_{f'} = \mathbb{R}$. Der Graph $G_{f'}$ besitzt für $x \to \pm \infty$ eine waagrechte Asymptote mit der Gleichung y = 1 und die Ableitungsfunktion f' hat genau zwei Nullstellen. Der Abbildung dürfen ganzzahlige Werte entnommen werden. (Abitur 2024 Teil 1)



- 39.1 Geben Sie jeweils die Art und die x-Koordinaten der beiden relativen Extrempunkte von $G_{_{\rm f}}$ an. \bigcirc
- 39.2 Der Graph G_f hat eine Stelle mit größtem Gefälle. Geben Sie sowohl diese Stelle als auch den Wert des größten Gefälles an.
- 39.3 Der Graph G_f der Funktion f besitzt für $x \to \infty$ eine Asymptote. Geben Sie die Art und die Steigung dieser Asymptote an und begründen Sie Ihre Antworten.
- 40 Gegeben ist die Funktion $h: x \mapsto \frac{1}{x} \cdot \ln(x+1)$ in ihrer maximalen Definitionsmenge $D_h \subseteq \mathbb{R}$. Ermitteln Sie das Verhalten der Funktionswerte von h für $x \to \infty$ und bei rechtsseitiger Annäherung an die Stelle x = -1.
- 41.0 Gegeben ist die Funktion h:x \mapsto 2,25 $\cdot \Big[ln(x) \Big]^2$ mit ihrer maximalen Definitionsmenge $D_h = \mathbb{R}^+$. Der Graph von h wird mit G_h bezeichnet. (Abitur 2024 AII)
- 41.1 Untersuchen Sie das Verhalten der Funktionswerte von h bei Annäherung an die Ränder von D_h .
- 41.2 Ermitteln Sie die Art und die Koordinaten des relativen Extrempunktes und die exakten Koordinaten des Wendepunktes von $\,G_{\!_h}\,.\,$

(mögliches Teilergebnis:
$$h'(x) = \frac{4.5 \cdot ln(x)}{x}$$
)

42.0 Gegeben ist die Funktion f $\operatorname{durch} \operatorname{die} \operatorname{Gleichung} f \Big(x \Big) = \frac{x+1}{1-x}$ $\operatorname{mit} \ D_f = \mathbb{R} \setminus \Big\{ 1 \Big\}. \ \operatorname{Der} \operatorname{Graph} \operatorname{der}$ $\operatorname{Funktion} f \operatorname{heißt} \ G_f. \ \operatorname{Die}$ $\operatorname{Abbildung} \ \operatorname{zeigt} \operatorname{einen} \operatorname{Teil}$ $\operatorname{von} \ G_f \ \operatorname{mit} \ \operatorname{seinen} \operatorname{beiden}$ $\operatorname{Asymptoten}. \ \operatorname{Die} \ \operatorname{reelle} \operatorname{Funktion}$ $\operatorname{h}: x \mapsto \ln \Big(f \Big(x \Big) \Big) \ \operatorname{besitzt} \operatorname{den}$ $\operatorname{maximalen} \operatorname{Definitionsbereich}$ $\operatorname{D}_h = \Big] -1; 1 \Big[\ . \ \operatorname{Der} \operatorname{Graph} \operatorname{der}$ $\operatorname{Funktion} \ \operatorname{h} \operatorname{heißt} \ G_h. \ \operatorname{Der} \operatorname{Graph}$ $\operatorname{G}_h \ \operatorname{ist} \operatorname{punktsymmetrisch} \operatorname{zum}$



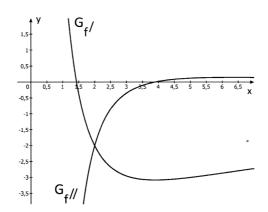
Ursprung des Koordinatensystems (Nachweis nicht erforderlich!) (Abitur 2024 AI)

- 42.1 Ermitteln Sie mithilfe von G_f das Verhalten der Funktionswerte von h bei Annäherung an die Ränder von D_h . Geben Sie die Gleichungen aller Asymptoten von G_h an. \bigcirc
- 42.2 Bestätigen Sie rechnerisch, dass G_h keine relativen Extrempunkte besitzt. (mögliches Teilergebnis: $h'(x) = \frac{-2}{x^2 1}$)
- 42.3 Zeichnen Sie G_h mit seinen Asymptoten in das Koordinatensystem aus 42.0 ein. \bigcirc
- 43.0 Gegeben ist die Funktion $f: x \mapsto -4 \cdot ln(0,5x) \cdot (1,5 \cdot ln(0,5x)+1)$ mit ihrer Definitionsmenge $D_f =]0; \infty[$. Der Graph der Funktion f heißt G_f . Er besitzt eine senkrechte Asymptote mit der Gleichung x = 0. Die erste Ableitungsfunktion f' hat die Gleichung $f'(x) = \frac{-12 \cdot ln(0,5x)-4}{x}$ mit der Definitionsmenge $D_{f'} = D_f$. (Abitur 2025 AI)
- 43.1 Berechnen Sie die exakten Nullstellen von f und ermitteln Sie das Verhalten der Funktionswerte von f an den Rändern von D_f.

43.2 Die Abbildung zeigt Ausschnitte der Graphen $G_f^{\ \ \ }$ und $G_f^{\ \ \ \ }$ der Ableitungsfunktionen $f^{\ \ \ \ }$ und $f^{\ \ \ \ \ }$ mit $D_f = D_{_{f/f}} = D_{_{f/f}}$. Die einzige

Nullstelle von f[/] ist $x = 2 \cdot e^{\frac{-1}{3}}$ und die einzige Nullstelle von

 $f^{\prime\prime}$ ist $x=2\cdot e^{\frac{2}{3}}$. Geben Sie mithilfe der Abbildung die maximalen Monotonieintervalle von G_f ,



sowie die maximalen Intervalle, in denen G_f links- bzw. rechtsgekrümmt ist, an. Begründen Sie, dass der Extrempunkt von G_f ein absoluter Hochpunkt ist. Bestimmen Sie jeweils die Koordinaten des Hochpunktes H und des Wendepunktes W von G_f . \bigcirc

- 43.3 Berechnen Sie das bestimmte Integral $\int_{4}^{6} f''(x) dx$. Das bestimmte Integral kann geometrisch als Maßzahl eines Flächenstücks im Koordinatensystem von Aufgabe 43.2 interpretiert werden. Kennzeichnen Sie diese Fläche in 43.2. \bigcirc
- 43.4 Ermitteln Sie eine Gleichung der Tangente t_P an G_f im Punkt P(2|f(2)).
- 43.5 Zeichnen Sie G_f und t_P im Bereich $0.5 \le x \le 4.5$ in ein kartesisches Koordinatensystem. Kennzeichnen Sie den Wendepunkt W und geben Sie eine Gleichung der Tangente t_H im absoluten Hochpunkt $H \in G_f$ an. Verwenden Sie eine eigene Seite für die Zeichnung. Maßstab auf beiden Achsen: 1 LE = 2 cm.

Lösungen

1.1

Schnittpunkt mit der x-Achse: y = 0

$$y = \frac{2 \cdot 0^2 - 2}{e^0} = -2 \implies S_y(0/-2)$$

Schnittpunkt mit der y-Achse: x = 0

$$\frac{2x^2 - 2}{e^x} = 0 \implies 2x^2 - 2 = 0 \implies x^2 = 1 \implies x_1 = -1 \quad x_2 = 1$$

$$N_1(-1/0) \quad N_2(1/0)$$

1.2

$$x \to +\infty \qquad \frac{\overbrace{2x^2 - 2}^{+\infty}}{\underbrace{e^x}_{x \to +\infty}} \to 0 \text{ weil e-Funktion überwiegt}$$

$$x \to -\infty \qquad \underbrace{\frac{2x^2 - 2}{e^x}_{x \to 0_+}}_{=0_+} \to +\infty$$

⇒ waagrechte Asymptote bei y = 0

1.3

$$f'(x) = \frac{4x \cdot e^{x} - (2x^{2} - 2) \cdot e^{x}}{e^{2x}} = \frac{(-2x^{2} + 4x + 2) \cdot e^{x}}{e^{2x}} = \frac{-2x^{2} + 4x + 2}{e^{x}}$$
$$f'(x) = 0 \implies -2x^{2} + 4x + 2 = 0 \implies x_{1} = 1 + \sqrt{2} \ (\approx 2, 41) \quad x_{2} = 1 - \sqrt{2} \ (\approx -0, 41)$$

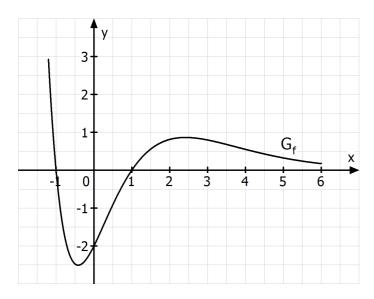
Skizze von f': Nenner immer positiv

Skizze von $(-2x^2+4x+2)$:

$$\Rightarrow x_1 = 1 + \sqrt{2} \text{ HP} \Rightarrow \text{HP}(1 + \sqrt{2} / 0.86)$$

$$x_2 = 1 - \sqrt{2} \text{ TP} \Rightarrow \text{TP}(1 - \sqrt{2} / -2.51)$$

±. i									
Х	-1,2	-1	0	1	2	3	4	5	6
f(x)	2,92	0	-2	0	0,81	0,80	0,55	0,32	0,17



$$F'(x) = -\frac{2 \cdot 2(x+1) \cdot e^{x} - 2(x+1)^{2} \cdot e^{x}}{e^{2x}} = -\frac{2(x+1) \cdot e^{x} \cdot [2 - (x+1)]}{e^{2x}} = -\frac{2(x+1) \cdot e^{x} \cdot [2 - (x+1)]}{e^{2x}} = -\frac{(2x+2) \cdot (1-x)}{e^{x}} = \frac{2x^{2} - 2}{e^{x}} = f(x)$$

 \Rightarrow F(x) ist Stammfunktion von f(x).

$$\int_{-1}^{1} f(x) dx = \left[-\frac{2(x+1)^{2}}{e^{x}} \right]_{-1}^{1} = \left(-\frac{2 \cdot 2^{2}}{e} \right) - (-0) = -\frac{8}{e}$$

$$\Rightarrow A = \frac{8}{e} FE$$

1.6.1

$$D_g =]-\infty; -1[\cup]1; \infty[$$
 (siehe Zeichnung 1.4)

Nullstelle: $g(x) = 0 \implies f(x) = 1$

in der Zeichnung 1.4 sieht man, dass y = 1 den Graph G_f nur einmal schneidet

 \Rightarrow g hat genau eine Nullstelle

1.6.2
$$x \to -\infty \qquad \ln(\underline{f(x)}) \to +\infty$$

$$x \to -1 \qquad \ln(\underline{f(x)}) \to -\infty$$

$$x \to 1 \qquad \ln(\underline{f(x)}) \to -\infty$$

$$x \to \infty \qquad \ln(\underline{f(x)}) \to -\infty$$

$$x \to \infty \qquad \ln(\underline{f(x)}) \to -\infty$$

1.6.3

$$g'(x) = \frac{1}{f(x)} \cdot f'(x) \quad g'(x) = 0 \quad \Rightarrow f'(x) = 0$$
$$\Rightarrow x_1 = 1 + \sqrt{2} \qquad (x_2 = 1 - \sqrt{2}) \notin D_g$$

Art des Extremums:

$$1 < x < 1 + \sqrt{2} : g'(x) > 0 \text{ (da } f'(x) > 0 \text{ und } f(x) > 0)$$

$$1 + \sqrt{2} < x < \infty \colon g'(x) < 0 \text{ (da } f'(x) < 0 \text{ und } f(x) > 0)$$

$$\Rightarrow x = 1 + \sqrt{2} \text{ HP } \Rightarrow HP(1 + \sqrt{2} / In(0,86)) \Rightarrow HP(1 + \sqrt{2} / -0,15)$$

2.1

Definitionsmenge:

$$0.1x+1>0$$
 $\Rightarrow x>-10$ $\Rightarrow D_k =]-10;\infty[$
Nullstelle: $k(x)=0$
 $\Rightarrow \ln(0.1x+1)=0$ $\Rightarrow 0.1x+1=1$ $\Rightarrow 0.1x=0$ $\Rightarrow x=0$

2.2

$$x \to -10 \qquad 8000 \cdot \frac{\overbrace{\ln(0,1x+1)}^{\longrightarrow \infty}}{\underbrace{0,1x+1}_{\longrightarrow 0_{+}}} \to -\infty$$

$$x \to +\infty \qquad 8000 \cdot \frac{\overbrace{\ln(0,1x+1)}^{\longrightarrow +\infty}}{\underbrace{0,1x+1}_{\longrightarrow +\infty}} \to 0 \quad \text{da Potenzfunktion überwiegt}$$

2.3.1

$$k'(x) = 8000 \cdot \frac{\frac{1}{0,1x+1} \cdot 0,1 \cdot (0,1x+1) - \ln(0,1x+1) \cdot 0,1}{(0,1x+1)^2} = 8000 \cdot \frac{0,1 \cdot (1 - \ln(0,1x+1))}{(0,1x+1)^2} = 800 \cdot \frac{1 - \ln(0,1x+1)}{(0,1x+1)^2}$$

$$k'(x) = 0 \implies 1 - \ln(0,1x+1) = 0 \implies \ln(0,1x+1) = 1$$

$$\implies 0,1x+1 = e \implies x = 10e - 10 (\approx 17,18)$$

Art des Extremums:

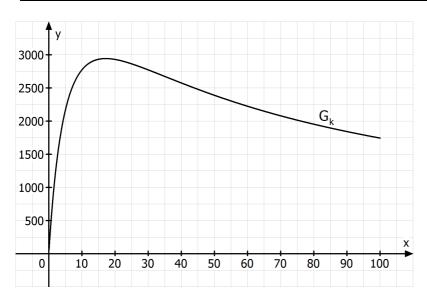
Skizze von k': Nenner immer positiv

Skizze von (1-ln(0,1x+1)):

$$\Rightarrow$$
 x = 10e-10 HP \Rightarrow HP(17,18/2943)

2.3.2

Х	0	10	20	30	35	40
k(x)	0	2772,59	2929,63	2772,59	2673,90	2575,10
х	50	60	70	80	90	100
k(x)	2389,01	2223,90	2079,44	1953,09	1842,07	1743,92



2.3.3

$$K'(x) = 40000 \cdot 2 \cdot \ln(0.1x + 1) \cdot \frac{1}{0.1x + 1} \cdot 0.1 = 8000 \cdot \frac{\ln(0.1x + 1)}{0.1x + 1} = k(x)$$

 \Rightarrow K ist Stammfunktion von k

$$I = \int_{0}^{80} k(x) dx = \left[40000 \cdot \left[\ln(0.1x + 1) \right]^{2} \right]_{0}^{80} = 40000 \cdot \left[\ln(9) \right]^{2} - 40000 \cdot \left[\ln(1) \right]^{2} \approx 193112$$

2.3.4

Mittlerer Energiebedarf:

$$\frac{193112}{80}$$
 \approx 2413,90 kcal

aus Zeichnung: $x_1 \approx 6$ $x_2 \approx 46$

3.1 Definitionsmenge: $\frac{x}{2x-3} > 0$

Vorzeichentabelle:

	0	1,5	
Х	-	+	+
2x – 3	-	-	+
$\frac{x}{2x-3}$	+	-	+

$$\Rightarrow D_{g} = \left] -\infty; 0 \right[\cup \left] 1,5; \infty \right[$$

3.2

$$x \to \pm \infty \qquad \ln\left(\frac{x}{2x-3}\right) \to \ln\frac{1}{2}$$

$$x \to 0 \qquad \ln\left(\frac{x}{2x-3}\right) \to -\infty$$

$$x \to 1,5 \qquad \ln\left(\frac{x}{2x-3}\right) \to +\infty$$

3.3

Asymptoten: x = 0 x = 1,5 (senkrechte Asymptoten)

$$y = ln \frac{1}{2}$$
 (waagrechte Asymptote)

Nullstelle:
$$g(x)=0 \Rightarrow \frac{x}{2x-3}=1 \Rightarrow x=2x-3 \Rightarrow x=3$$

$$g'(x) = \frac{1}{\frac{x}{2x-3}} \cdot \frac{1 \cdot (2x-3) - x \cdot 2}{(2x-3)^2} = \frac{2x-3}{x} \cdot \frac{-3}{(2x-3)^2} = \frac{-3}{x(2x-3)}$$

 $g'(x)=0 \implies -3=0$ (f) \implies keine Extrema

Skizze von g': Zähler immer negativ

Skizze Nenner:

$$\Rightarrow$$
 G_g smf in $]-\infty;0[$ sowie in $]1,5;\infty[$

4.1

Symmetrie:

$$f(-x) = ((-x)^2 - 2(-x) + 1) \cdot e^{-2x} = (x^2 + 2x + 1) \cdot e^{-2x} \neq \begin{cases} f(x) \\ -f(x) \end{cases}$$

⇒ G_f ist weder achsensymmetrisch zur y-Achse noch punktsymmetrisch zum Ursprung

Schnittpunkt mit der y-Achse: x = 0

$$\Rightarrow$$
 y = $(0^2 - 2 \cdot 0 + 1) \cdot e^0 = 1 \Rightarrow S_y(0/1)$

Schnittpunkt mit der x-Achse: y = 0

$$\Rightarrow$$
 $x^2 - 2x + 1 = 0$ (weil e^{2x} immer positiv ist)

$$\Rightarrow (x-1)^2 = 0 \Rightarrow x = 1 \Rightarrow N(1/0)$$

$$x \to +\infty$$
 $\underbrace{\left(x^2 - 2x + 1\right)}_{\rightarrow +\infty} \cdot \underbrace{e^{2x}}_{\rightarrow +\infty} \to +\infty$

$$x \to +\infty \qquad \underbrace{\left(x^2 - 2x + 1\right)}_{\to +\infty} \cdot \underbrace{e^{2x}}_{\to +\infty} \to +\infty$$

$$x \to -\infty \qquad \underbrace{\left(x^2 - 2x + 1\right)}_{\to +\infty} \cdot \underbrace{e^{2x}}_{\to 0_+} \to 0 \qquad \text{weil e-Funktion "überwiegt}$$

Asymptote: y = 0

$$f'(x) = (2x-2) \cdot e^{2x} + (x^2 - 2x + 1) \cdot e^{2x} \cdot 2 = e^{2x} \cdot (2x - 2 + 2x^2 - 4x + 2) =$$

$$= e^{2x} \cdot (2x^2 - 2x)$$

$$f'(x) = 0 \implies 2x^2 - 2x = 0 \quad \text{(weil } e^{2x} \text{ immer positiv ist)}$$

$$\implies 2x(x-1) = 0 \implies x_1 = 0 \quad x_2 = 1$$

Skizze von f': e^{2x} immer positiv ist

Skizze von $(2x^2 - 2x)$:

$$\Rightarrow$$
 G_f sms in]- ∞ ;0] sowie in [1; ∞ [und G_f smf in [0;1]

4.3

Х	-1,3	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
f(x)	0,39	0,439	0,541	0,654	0,771	0,881	0,965	1
Х	0,2	0,4	0,6	0,8	1	1,2	1,3	
f(x)	0,955	0,801	0,531	0,198	0	0,441	1,2	



$$F'(x) = \frac{1}{2} \cdot \left[(2x+b) \cdot e^{2x} + (x^2+bx+c) \cdot e^{2x} \cdot 2 \right] =$$

$$= \frac{1}{2} \cdot e^{2x} \cdot \left[2x^2 + (2b+2)x + b + 2c \right] = e^{2x} \cdot \left[x^2 + (b+1)x + \frac{1}{2}b + c \right]$$

$$\Rightarrow b+1 = -2 \quad \Rightarrow b = -3$$

$$\Rightarrow \frac{1}{2}b+c=1 \quad \Rightarrow \frac{1}{2}(-3)+c=1 \quad \Rightarrow c=2,5$$

$$A = \int_{0}^{1} f(x) dx = \left[\frac{1}{2} (x^{2} - 3x + 2, 5) \cdot e^{2x} \right]_{0}^{1} =$$

$$\frac{1}{2} (1^{2} - 3 \cdot 1 + 2, 5) \cdot e^{2} - \frac{1}{2} \cdot 2, 5 \cdot e^{0} = \frac{1}{4} e^{2} - 1, 25 \text{ FE}$$

Definitionsmenge:
$$\frac{x^2}{x+2} > 0$$

 $x^2 = 0 \implies x = 0$

Vorzeichenverteilung:

 $x+2=0 \Rightarrow x=-2$

	-2	0	
x ²	+	+	+
x + 2	-	+	+
$\frac{x^2}{x+2}$	-	+	+

$$\Rightarrow$$
 D(f) = $]-2;+\infty[\setminus\{0\}]$

Grenzverhalten:

$$x \stackrel{<}{\to} 0 \qquad \ln \left(\frac{x^2}{x+2} \right) \rightarrow -\infty$$

$$x \xrightarrow{>} 0$$
 $\ln \left(\frac{x^2}{x+2} \right) \rightarrow -\infty$

$$x \xrightarrow{>} -2 \qquad \ln\left(\frac{x^2}{x+2}\right) \to +\infty$$

$$x \to +\infty$$
 $\ln\left(\frac{x^2}{x+2}\right) \to +\infty$

Asymptoten:

$$x = -2$$
 $x = 0$

$$f(x) = 0 \implies \frac{x^2}{x+2} = 1 \implies x^2 = x+2 \implies x^2 - x - 2 = 0$$
$$\implies (x-2)(x+1) = 0 \implies x_1 = 2 \quad x_2 = -1$$

$$f'(x) = \frac{1}{\frac{x^2}{x+2}} \cdot \frac{2x \cdot (x+2) - x^2 \cdot 1}{(x+2)^2} = \frac{(x+2) \cdot (x^2 + 4x)}{x^2 \cdot (x+2)^2} = \frac{x^2 + 4x}{x^2 \cdot (x+2)} = \frac{x+4}{x \cdot (x+2)}$$

$$f'(x) = 0 \implies x + 4 = 0 \implies (x = -4) \notin D(f)$$

Skizze von f':

Skizze Zähler: Skizze Nenner:

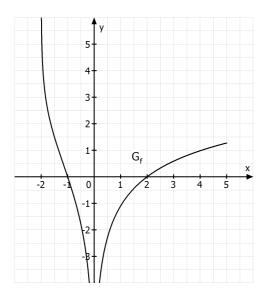
$$\Rightarrow$$
 G(f) ist sms in $]0;+\infty[$ und smf in $]-2;0[$

5.4

.+									
	Х	-1,5	-1	-0,5	0	0,5	1	2	5

Jochen Weber

f(x)	1,50	0	-1,79	 -2,30	-1,1	0	1,27



Definitionsmenge:

$$x > 0 \implies D_f = \mathbb{R}^+$$

Nullstelle:

$$f(x)=0 \implies x^2=0 \implies (x=0) \notin D_f$$

$$\implies \ln x=0 \implies x=1$$

6.2

$$f'(x) = 2x \cdot \ln x + x^2 \cdot \frac{1}{x} = 2x \cdot \ln x + x = x(2\ln x + 1)$$

$$f'(x) = 0 \implies x(2\ln x + 1) = 0 \implies (x = 0) \notin D_f \quad 2\ln x + 1 = 0 \implies x = e^{-0.5}$$
Skizze von $f': x > 0$ wegen D_f
Skizze von $(2\ln x + 1)$:

$$\Rightarrow$$
 x = e^{-0.5} TP \Rightarrow TP(e^{-0.5}/-0.5e⁻¹) (0.607/-0.184)

6.3

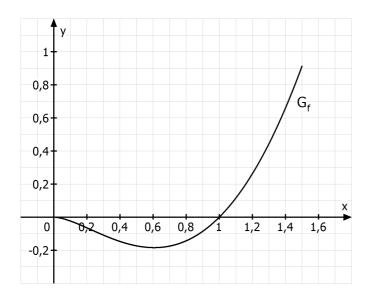
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(x^2 \cdot \ln x \right) = \lim_{x \to 0} \frac{\ln x}{1} = \lim_{x \to 0} \frac{\frac{1}{x}}{\frac{1}{x^2}} = \lim_{x \to 0} \left(-\frac{1}{2} x^2 \right) = 0$$

$$\lim_{\stackrel{>}{x \to 0}} f'(x) = \lim_{\stackrel{>}{x \to 0}} \left[x \cdot (2\ln x + 1) \right] = \lim_{\stackrel{>}{x \to 0}} \frac{2\ln x + 1}{\frac{1}{x}} = \lim_{\stackrel{>}{x \to 0}} \frac{\frac{2}{x}}{-\frac{1}{x^2}} = \lim_{\stackrel{>}{x \to 0}} \left(-2x \right) = 0$$

6.4

$$f'(e^{-0.5}) = 0$$
 (siehe 6.2)
 $\lim_{x \to 0} f'(x) = 0$ (siehe 6.3)
 $f'(x) < 0$ für $x \in]0; e^{-0.5}[$ (siehe 6.2)
 $\Rightarrow f'$ muss im Intervall $]0; e^{-0.5}[$ einen Extrempunkt (Tiefpunkt) haben
 $\Rightarrow G_f$ hat einen Wendepunkt in $]0; e^{-0.5}[$

Х	0,2	0,4	0,8	1,2	1,5
f(x)	-0,06	-0,15	-0,14	0,26	0,91



7.1

Definitionsmenge:

$$(x+2)^2+4>0 \Rightarrow x^2+4x+8>0$$

$$x^2 + 4x + 8 = 0 \implies x_{1/2} = \frac{-4 \pm \sqrt{16 - 32}}{2} = \frac{-4 \pm \sqrt{-16}}{2}$$
 (f)

Skizze von $(x^2 + 4x + 8)$:

$$\Rightarrow$$
 D_f = \sim

Nullstellen:

$$f(x) = 0 \implies (x+2)^2 + 4 = 1 \implies (x+2)^2 = -3$$
 (f)

⇒ f hat keine Nullstellen

Verhalten von f(x) an den Rändern des Definitionsbereichs:

$$x \to \pm \infty$$
 $2 \cdot \ln \left(\left(x + 2 \right)^2 + 4 \right) \to +\infty$

$$f'(x) = 2 \cdot \frac{1}{(x+2)^2 + 4} \cdot 2(x+2) = \frac{4x+8}{x^2 + 4x + 8}$$

$$f'(x) = 0 \implies 4x + 8 = 0 \implies x = -2$$

Skizze von f': Nenner immer positiv

Skizze von (4x+8):

$$\Rightarrow$$
 x = -2 TP \Rightarrow TP(-2/2ln4) (-2/2,77)

$$f''(x) = \frac{4(x^2 + 4x + 8) - (4x + 8)(2x + 4)}{(x^2 + 4x + 8)^2} = \frac{-4x^2 - 16x}{(x^2 + 4x + 8)^2}$$
$$f''(x) = 0 \implies -4x^2 - 16x = 0 \implies -4x(x + 4) = 0 \implies x_1 = 0 \quad x_2 = -4$$

Skizze von f'': Nenner immer positiv

Skizze von $(-4x^2 - 16x)$:

$$\Rightarrow$$
 x₁ = 0 WP WP₁(0/2ln8) x₂ = -4 WP WP₂(-4/2ln8)

Gleichung der Wendetangente:

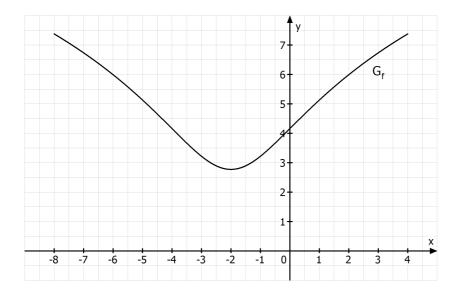
$$y = mx + t$$

$$m = f'(0) = 1 \implies y = x + t$$

$$\Rightarrow$$
2ln8=0+t \Rightarrow t=2ln8

$$\Rightarrow$$
 y = x + 2ln8

Х	-8	-6	2	4
f(x)	7,4	6	6	7,4



Definitionsmenge:

$$x > 0 \implies D_g = ^{\sim +}$$

Nullstellen:

$$g(x) = 0 \Rightarrow \ln x = 0 \Rightarrow x = 1$$

 $\Rightarrow 2 - \ln x = 0 \Rightarrow \ln x = 2 \Rightarrow x = e^{2}$

Verhalten von g(x) an den Rändern von $D_{\rm g}$:

$$x \xrightarrow{>} 0 \qquad 4 \cdot \underbrace{\ln x}_{\rightarrow -\infty} \cdot \underbrace{(2 - \ln x)}_{\rightarrow +\infty} \rightarrow -\infty$$

$$x \rightarrow +\infty \qquad 4 \cdot \underbrace{\ln x}_{\rightarrow +\infty} \cdot \underbrace{(2 - \ln x)}_{\rightarrow -\infty} \rightarrow -\infty$$

8.2

$$g'(x) = 4 \cdot \left[\frac{1}{x} \cdot (2 - \ln x) + \ln x \cdot \left(-\frac{1}{x}\right)\right] = 4 \cdot \frac{2 - 2\ln x}{x} = \frac{8 \cdot (1 - \ln x)}{x}$$

$$g'(x)=0 \Rightarrow 1-\ln x=0 \Rightarrow \ln x=1 \Rightarrow x=e$$

Skizze von g': Nenner immer positiv für $D_g = \mathbb{R}^+$; 8 immer positiv Skizze von (1-lnx):

⇒ x = e HP HP(e/4)
⇒
$$G_g$$
 sms in $]0;e]$ und G_g smf in $[e;\infty[$

Definitionsmenge:

$$\frac{x-2}{3x} > 0$$

Nullstellen bestimmen: 1) $x-2=0 \Rightarrow x=2$ 2) $3x=0 \Rightarrow x=0$

	0	2	
x-2	-	-	+
3x	-	+	+
$\frac{x-2}{3x}$	+	-	+

$$\Rightarrow$$
 D(f) = $]-\infty$; 0[\cup]2; ∞ [= $^{\sim}$ \[0;2]

Verhalten am Rand der Definitionsmenge:

$$x \to -\infty$$
 $\ln\left(\frac{x-2}{3x}\right) \to \ln\left(\frac{1}{3}\right)$

$$x \stackrel{<}{\to} 0 \qquad \ln\left(\frac{x-2}{3x}\right) \longrightarrow +\infty$$

$$x \xrightarrow{>} 2 \quad \ln\left(\frac{x-2}{3x}\right) \to -\infty$$

$$x \to +\infty$$
 $\ln\left(\frac{x-2}{3x}\right) \to \ln\left(\frac{1}{3}\right)$

Gleichungen der Asymptoten:

x = 0(senkrechte Asymptote) x = 2(senkrechte Asymptote)

$$y = In \left(\frac{1}{3}\right)$$
 (waagrechte Asymptote)

Nullstelle:

$$f(x) = 0 \implies \frac{x-2}{3x} = 1 \implies x-2 = 3x \implies x = -1$$

$$f'(x) = \frac{1}{\frac{x-2}{3x}} \cdot \frac{3x - (x-2) \cdot 3}{(3x)^2} = \frac{3x \cdot (3x - 3x + 6)}{(x-2) \cdot (3x)^2} = \frac{6}{(x-2) \cdot 3x} = \frac{2}{x^2 - 2x}$$

 $f'(x)=0 \implies 2=0$ (f) \implies f hat keine Extremstellen

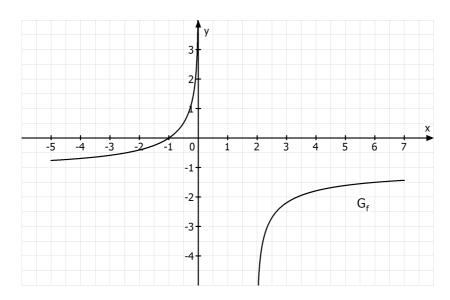
Skizze von f': Zähler immer positiv

Skizze von $(x^2 - 2x)$:

$$\Rightarrow$$
 G_f sms in]- ∞ ;0[sowie in]2; ∞ [

9.3

Х	-5	-3	-1	-0,5	2,5	4	7
f(x)	-0,76	-0,59	0	0,51	-2,71	-1,79	-1,44



9.4

Extrempunkt von F:

$$F'(x) = f(x)$$
 $\Rightarrow F'(x) = 0$ $\Rightarrow f(x) = 0$ $\Rightarrow x = -1$

Skizze von F´: siehe $G_{_{\rm f}}$ (Aufgabe 9.3)

$$\Rightarrow$$
 x = -1 TP

Krümmungsverhalten von G(F):

$$F''(x) = f'(x) \implies F''(x) = 0 \implies f'(x) = 0 \implies \text{keine Nullstellen (siehe Aufgabe 9.2)}$$

 $\implies G(F) \text{ ist linksgekrümmt in } -\infty; 0 [\text{ sowie in }]2; \infty[$

	1	2	
$(x-2)^2$	+	+	+
x - 1	-	+	+
$\frac{(x-2)^2}{x-1}$	-	+	+

$$\Rightarrow D_{g} =]1;2[\cup]2;\infty[$$

$$x \to 1 \qquad In \underbrace{\frac{(x-2)^{2}}{x-1}} \to +\infty$$

$$x \to 2 \qquad In \underbrace{\frac{(x-2)^{2}}{x-1}} \to -\infty$$

$$x \to 2 \qquad In \underbrace{\frac{(x-2)^{2}}{x-1}} \to -\infty$$

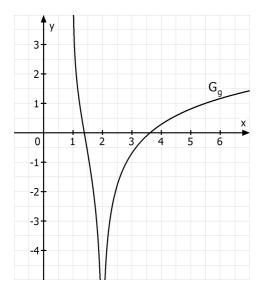
$$x \to +\infty \qquad In \underbrace{\frac{(x-2)^{2}}{x-1}} \to +\infty$$

Asymptoten:

$$x_1 = 1$$
 $x_2 = 2$

$$g(x) = 0 \implies \frac{(x-2)^2}{x-1} = 1 \implies x^2 - 4x + 4 = x - 1 \implies x^2 - 5x + 5 = 0$$

$$\Rightarrow x_{1/2} = \frac{5 \pm \sqrt{25 - 20}}{2} = \frac{5 \pm \sqrt{5}}{2} \implies x_1 \approx 3,62 \quad x_2 \approx 1,38$$



Definitionsmenge:

$$x-3>0 \Rightarrow x>3 \Rightarrow D_h =]3;+\infty[$$

Nullstelle:
$$h(x) = 0$$

$$\Rightarrow$$
 x - 4 = 0 \Rightarrow x₁ = 4

$$ln(x-3)=0 \implies x-3=1 \implies x_2=4$$

 \Rightarrow x = 4 ist eine doppelte Nullstelle

$$x \xrightarrow{>} 3 \qquad \underbrace{(x-4)}_{\rightarrow -1} \cdot \underbrace{\ln(x-3)}_{\rightarrow -\infty} \rightarrow +\infty$$

$$x \rightarrow +\infty \qquad \underbrace{(x-4)}_{\rightarrow +\infty} \cdot \underbrace{\ln(x-3)}_{\rightarrow +\infty} \rightarrow +\infty$$

Senkrechte Asymptote bei x = 3

11.2

h'(x)=ln(x-3)+(x-4)
$$\cdot \frac{1}{x-3}$$
=ln(x-3)+ $\frac{x-4}{x-3}$

$$h'(4) = \ln(4-3) + \frac{4-4}{4-3} = \ln 1 + 0 = 0$$

 \Rightarrow G_h hat an der Stelle x = 4 einen Punkt mit waagrechter Tangente.

$$h''(x) = \frac{1}{x-3} + \frac{x-3-(x-4)}{(x-3)^2} = \frac{1}{x-3} + \frac{1}{(x-3)^2} = \frac{x-3+1}{(x-3)^2} = \frac{x-2}{(x-3)^2} \quad D_{h''} = D_{h}$$

$$h''(x) = 0 \implies x - 2 = 0 \quad (x = 2) \notin D_h$$

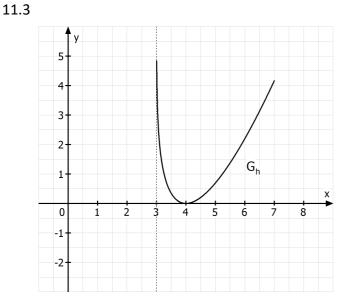
Skizze von h'': Nenner immer positiv

Skizze von (x-2):

$$\Rightarrow$$
 G_h linksgekrümmt in $3;+\infty$

⇒ x = 4 im Bereich der Linkskrümmung ⇒ absoluter Tiefpunkt

$$W_h = \mathbb{R}_0^+$$



12

$$g(x) = \ln \left(\frac{x+2}{2x-2} \right)$$

Definitionsmenge:

$$\frac{x+2}{2x-2} > 0$$

	-2	1	
x + 2	-	+	+
2x – 2	-	-	+
$\frac{x+2}{2x-2}$	+	-	+

$$\Rightarrow D_{_{g}} = \left] - \infty; -2 \right[\cup \left] 1; \infty \right[$$

Nullstelle:

$$g(x)=0 \Rightarrow \frac{x+2}{2x-2}=1 \Rightarrow x+2=2x-2 \Rightarrow x=4$$

Definitionsmenge: $D_f = {}^{\sim} {}^+$ (weil das Argument des In größer als Null sein muss) Nullstellen:

$$f(x) = 0 \implies 2 \cdot ln(x) + 1 = 0 \implies lnx = -\frac{1}{2} \implies x = e^{-0.5}$$

$$x \xrightarrow{>} 0$$
 $\xrightarrow{\overbrace{2 \cdot \ln(x) + 1}} \xrightarrow{\longrightarrow} -\infty$

$$x \to +\infty \qquad \overbrace{\frac{2 \cdot \ln(x) + 1}{\underbrace{x}}}^{\to 0_+} \to 0 \qquad \text{weil Potenzfunktion "uberwiegt}$$

Asymptoten:

$$x = 0$$
 $y = 0$

13.2

$$f'(x) = \frac{2 \cdot \frac{1}{x} \cdot x - (2 \cdot \ln(x) + 1) \cdot 1}{x^2} = \frac{2 - 2 \cdot \ln(x) - 1}{x^2} = \frac{1 - 2 \cdot \ln(x)}{x^2}$$

$$f'(x) = 0 \Rightarrow 1 - 2 \cdot \ln(x) = 0 \Rightarrow \ln x = \frac{1}{2} \Rightarrow x = e^{0.5}$$

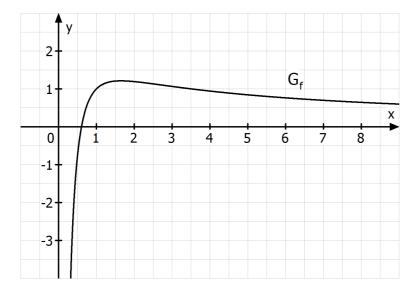
Skizze von f': Nenner immer positiv

Skizze von $(1-2 \cdot ln(x))$:

$$\begin{split} &\Rightarrow x \!=\! e^{0,5} \; HOP \; \Rightarrow \! HOP \! \left(e^{0,5} \, / \frac{2}{e^{0,5}} \right) \\ &\Rightarrow \! G_{_f} \; sms \; in \; \left] 0; e^{0,5} \right] und \; G_{_f} \; smf \; in \; \left[e^{0,5}; \infty \right[\right] \end{split}$$

13.3

Da der Graph in $]0;e^{0,5}]$ sms und in $[e^{0,5};\infty[$ smf ist und sich der Graph für $x \to \infty$ der x- Achse annähert, muss G_f für $x > e^{0,5}$ einen Wendepunkt besitzen.



Definitionsmenge:
$$\frac{x^2-5}{4(x-3)} > 0$$
 $\Rightarrow D_g = \left] -\sqrt{5}; \sqrt{5} \right[\cup \left] 3; \infty \right[$

Nullstellen:
$$g(x) = 0 \implies \frac{x^2 - 5}{4(x - 3)} = 1 \implies x^2 - 5 = 4x - 12 \implies x^2 - 4x + 7 = 0$$

⇒ g hat keine Nullstellen

Verhalten von g(x) an den Rändern des Definitionsbereichs:

$$x \xrightarrow{>} -\sqrt{5}$$
 $\ln\left(\frac{x^2-5}{4x-12}\right) \to -\infty$

$$x \xrightarrow{<} \sqrt{5}$$
 $\ln \left(\frac{x^2 - 5}{4x - 12} \right) \rightarrow -\infty$

$$x \xrightarrow{>} 3$$
 $\ln\left(\frac{x^2 - 5}{4x - 12}\right) \rightarrow +\infty$

$$x \to +\infty$$
 $\ln\left(\frac{x^2 - 5}{4x - 12}\right) \to +\infty$

$$g'(x) = \frac{4x - 12}{x^2 - 5} \cdot \frac{x^2 - 6x + 5}{(4x - 12)^2} = \frac{x^2 - 6x + 5}{(x^2 - 5)(4x - 12)}$$
$$g'(x) = 0 \implies x^2 - 6x + 5 = 0 \implies x_1 = 5 \quad x_2 = 1$$

Vorzeichenuntersuchung:

	$-\sqrt{5}$	1	$\sqrt{!}$	5 3	5	
$x^2 - 6x + 5$	+	+	-	-	-	+
x^2-5	+	-	-	+	+	+
4x-12	-	-	-	-	+	+
g'(x)	-	+	-	+	-	+

$$\Rightarrow$$
 $x_1 = 5$ TIP TIP(5/In(2,5)) $x_2 = 1$ HOP HOP(1/In(0,5))

15.1

$$D_h =]0;\infty[$$

Nullstelle:
$$h(x) = 0 \implies 2 - \ln x = 0 \implies x = e^2$$

$$\Rightarrow$$
 h hat eine Nullstelle bei x = e^2 (doppelt)

Verhalten von h(x) an den Rändern des Definitionsbereichs:

$$x \to 0 \qquad 10 \cdot \left(\underbrace{2 - \ln(x)}_{\to +\infty}\right)^{2} \to +\infty$$
$$x \to +\infty \qquad 10 \cdot \left(\underbrace{2 - \ln(x)}_{\to -\infty}\right)^{2} \to +\infty$$

15.2

 $x = e^2$ ist einzige und doppelte Nullstelle von $h \Rightarrow$ einfache Nullstelle von $h \Rightarrow$ Extremum von h';

Wegen des Grenzverhaltens für $x \rightarrow 0$ und $x \rightarrow +\infty$ muss $x = e^2$ ein Tiefpunkt sein;

$$h'(x) = 10 \cdot 2(2 - \ln x) \cdot \left(-\frac{1}{x}\right) = -20 \cdot \frac{2 - \ln x}{x}$$

$$h''(x) = -20 \cdot \frac{-\frac{1}{x} \cdot x - (2 - \ln x) \cdot 1}{x^2} = -20 \cdot \frac{\ln x - 3}{x^2} = 20 \cdot \frac{3 - \ln x}{x^2}$$

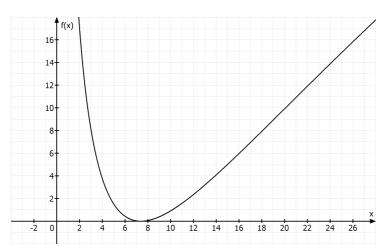
$$h''(x)=0 \Rightarrow 3-\ln x=0 \Rightarrow x=e^3$$

Nachweis WP:

Skizze von h'': 20 und Nenner immer positiv;

Skizze von (3-Inx):

$$\Rightarrow$$
 x = e³ WP wegen VZW \Rightarrow WP(e³ /10)



$$\left(\frac{1}{4}x^2 + x + 2\right) \cdot e^{-0.5x} = 0 \implies \frac{1}{4}x^2 + x + 2 = 0 \implies D \text{ negativ}$$

⇒ f hat keine Nullstellen

$$x \to +\infty$$
 $\underbrace{\left(\frac{1}{4}x^2 + x + 2\right)}_{\to 0_+} \underbrace{e^{-0.5x}}_{\to 0_+} \to 0$ weil e-Funktion überwiegt

$$x \to -\infty$$
 $\left(\frac{1}{4}x^2 + x + 2\right) \cdot \underbrace{e^{-0.5x}}_{\to +\infty} \to +\infty$

16.2

$$f'(x) = \left(\frac{1}{2}x + 1\right) \cdot e^{-0.5x} + \left(\frac{1}{4}x^2 + x + 2\right) \cdot e^{-0.5x} \cdot (-0.5) =$$

$$= e^{-0.5x} \cdot \left(\frac{1}{2}x + 1 - \frac{1}{8}x^2 - \frac{1}{2}x - 1\right) = -\frac{1}{8}x^2 \cdot e^{-0.5x}$$

$$f'(x) = 0 \implies -\frac{1}{8}x^2 \cdot e^{-0.5x} = 0 \implies -\frac{1}{8}x^2 = 0 \implies x = 0$$

Skizze von f': $e^{-0.5x}$ immer positiv

Skizze von
$$\left(-\frac{1}{8}x^2\right)$$
:

$$\Rightarrow$$
 G_f smf in $]-\infty;\infty[$

x = 0 kein Extrempunkt, da kein VZW $\Rightarrow x = 0$ TEP \Rightarrow TEP(0/2)

$$f''(x) = -\frac{1}{4}x \cdot e^{-0.5x} + \left(-\frac{1}{8}x^2\right) \cdot e^{-0.5x} \cdot (-0.5) = e^{-0.5x} \cdot \left(-\frac{1}{4}x + \frac{1}{16}x^2\right)$$

$$\Rightarrow e^{-0.5x} \cdot \left(-\frac{1}{4}x + \frac{1}{16}x^2 \right) = 0 \Rightarrow -\frac{1}{4}x + \frac{1}{16}x^2 = 0 \Rightarrow x_1 = 0 \quad x_2 = 4$$

Skizze von f'': $e^{-0.5x}$ immer positiv

Skizze von
$$\left(-\frac{1}{4}x + \frac{1}{16}x^2\right)$$
:

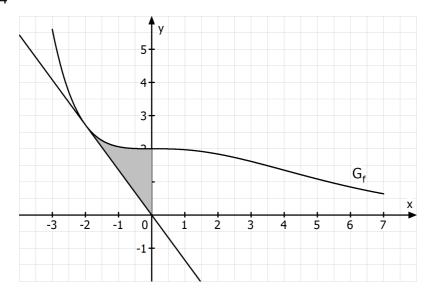
$$\Rightarrow$$
 x₁ = 0 und x₂ = 4 WP wegen VZW

$$\Rightarrow$$
 TEP(0/2) WP(4/10e⁻²)

$$y_p = f(-2) = e$$

 $y = mx + t$ $m = f'(-2) = -0.5e$
 $\Rightarrow e = -0.5e \cdot (-2) + t \Rightarrow t = 0$
 $\Rightarrow y = -0.5e \cdot x$

16.4



16.5.1

$$F'(x) = (-x+a) \cdot e^{-0.5x} + (-0.5x^{2} + ax + b) \cdot e^{-0.5x} \cdot (-0.5) =$$

$$= e^{-0.5x} \cdot \left(-x + a + \frac{1}{4}x^{2} - 0.5ax - 0.5b \right) =$$

$$= e^{-0.5x} \cdot \left(\frac{1}{4}x^{2} + (-1 - 0.5a) \cdot x + a - 0.5b \right)$$

$$\Rightarrow -1 - 0.5a = 1 \Rightarrow a = -4$$

$$a - 0.5b = 2 \Rightarrow b = -12$$

16.5.2

$$A = \int_{-2}^{0} (f(x) - t(x)) dx = \left[(-0.5x^{2} - 4x - 12) \cdot e^{-0.5x} - (-0.25e \cdot x^{2}) \right]_{-2}^{0} =$$

$$= (-12 - 0) - (-6e - (-e)) = -12 + 5e$$

17.1
$$D_{g} =]-2;2[(da h(x) > 0 gelten muss)]$$

$$x \xrightarrow{>} -2 \qquad ln(\underbrace{h(x)}_{\to 0_{+}}) \to -\infty$$

$$x \xrightarrow{<} 2$$
 $\ln(\underbrace{h(x)}_{\to 0_+}) \xrightarrow{} -\infty$

Nullstellen:
$$g(x) = 0 \implies h(x) = 1 \implies x_1 = -1 \qquad x_2 = 1$$

$$\begin{split} g'(x) &= \frac{1}{h(x)} \cdot h'(x) \\ g'(x) &= 0 \implies h'(x) = 0 \implies x = 0 \\ h(x) &> 0 \text{ für } x \in \left] -2; 2 \right[\\ h'(x) &> 0 \text{ für } x \in \left] -2; 0 \right] \qquad h'(x) &< 0 \text{ für } x \in \left[0; 2\right[\\ \implies x &= 0 \text{ HOP } \implies \text{HOP} \left(0 / \ln(2)\right) \end{split}$$

18

a) Aussage falsch.

Argument bei In muss größer Null sein, was aber bei einer nach oben geöffneten Parabel mit zwei Nullstellen nicht immer der Fall ist $\Rightarrow D_h \neq \mathbb{R}$

b)Aussage richtig, weil die nach oben geöffnete Parabel mit zwei verschiedenen Schnittpunkten mit der x-Achse genau zweimal den y-Wert 1 annimmt.

c)
$$h'(x) = \frac{1}{g(x)} \cdot g'(x)$$
 $h'(x) = 0 \Rightarrow g'(x) = 0$

⇒ Extrempunkt von h läge an der x-Stelle des Scheitels, aber der ist unterhalb der x-Achse, d.h. nicht definiert ⇒ Aussage falsch;

(I)
$$g(2) = 0 \implies 4a + 2b = 1$$

(II)
$$g'(3) = 0$$

$$g'(x) = \frac{1}{ax^2 + bx} \cdot (2ax + b)$$

$$\Rightarrow \frac{1}{9a + 3b} \cdot (6a + b) = 0 \Rightarrow 6a + b = 0$$

$$(II) \Rightarrow b = -6a$$

b=-6a in (I):
$$4a-12a=1 \implies a=-\frac{1}{8}$$

 $\Rightarrow b=-6 \cdot \left(-\frac{1}{8}\right) = \frac{3}{4}$

19.2

$$g'(x) = \frac{1}{-0,125x^2 + 0,75x} \cdot (-0,25x + 0,75) = \frac{-0,25x + 0,75}{-0,125x^2 + 0,75x}$$

$$g'(x) = 0 \implies -0.25x + 0.75 = 0 \implies x = 3$$

Skizze von g´: Nenner in $\boldsymbol{D}_{\!\scriptscriptstyle g}$ immer positiv, da Argument von In

Skizze von (-0.25x+0.75):

$$\Rightarrow$$
 x = 3 HOP

20.1

Definitionsmenge:

$$\frac{x^2+1}{2-x} > 0 \implies 2-x > 0$$
 (weil Zähler immer positiv) $\implies x < 2$
 $\implies D_g =]-\infty;2[$

$$x \to -\infty$$
 $\ln \left(\frac{x^2 + 1}{\underbrace{2 - x}_{\rightarrow +\infty}} \right) \to +\infty$

$$x \xrightarrow{<} 2$$
 $\ln \left(\frac{x^2 + 1}{2 - x} \right) \rightarrow +\infty$

$$g(x) = 0 \implies \frac{x^{2} + 1}{2 - x} = 1 \implies x^{2} + 1 = 2 - x$$

$$\implies x^{2} + x - 1 = 0 \implies x_{1/2} = \frac{-1 \pm \sqrt{1 - 4 \cdot 1 \cdot (-1)}}{2} = \frac{-1 \pm \sqrt{5}}{2}$$

$$\implies x_{1} = \frac{-1 + \sqrt{5}}{2} \ (\approx 0.62) \quad x_{2} = \frac{-1 - \sqrt{5}}{2} \ (\approx -1.62)$$

20.3

$$g'(x) = \frac{1}{\frac{x^2 + 1}{2 - x}} \cdot \frac{2x \cdot (2 - x) - (x^2 + 1) \cdot (-1)}{(2 - x)^2} = \frac{2 - x}{x^2 + 1} \cdot \frac{4x - 2x^2 + x^2 + 1}{(2 - x)^2} =$$

$$= \frac{1}{x^2 + 1} \cdot \frac{-x^2 + 4x + 1}{(2 - x)} = \frac{-x^2 + 4x + 1}{(x^2 + 1)(2 - x)}$$

$$g'(x) = 0 \implies -x^2 + 4x + 1 = 0 \implies x_{1/2} = \frac{-4 \pm \sqrt{16 - 4 \cdot (-1) \cdot 1}}{-2} = \frac{-4 \pm \sqrt{20}}{-2}$$

$$\implies x_1 = 2 - \sqrt{5} \ (\approx -0.24) \quad \left(x_2 = 2 + \sqrt{5} \ (\approx 4.24)\right) \notin D_g$$

Skizze von g': Nenner in D immer positiv

Skizze von $(-x^2 + 4x + 1)$:

$$\Rightarrow$$
 x = -0,24 TIP TIP(-0,24/In0,47)

21

Definitionsmenge:
$$x^3 + x^2 > 0$$

$$x^3 + x^2 = 0$$
 $\Rightarrow x^2(x+1) = 0$ $\Rightarrow x_1 = 0$ $x_2 = -1$

Skizze:

$$\Rightarrow D_{h} =]-1;0[\cup]0;\infty[$$

$$x \xrightarrow{>} -1 \qquad In\left(\underbrace{x^{3} + x^{2}}_{\rightarrow 0_{+}}\right) \rightarrow -\infty$$

$$x \xrightarrow{>} 0 \qquad In\left(\underbrace{x^{3} + x^{2}}_{\rightarrow 0_{+}}\right) \rightarrow -\infty$$

$$x \xrightarrow{>} 0 \qquad In\left(\underbrace{x^{3} + x^{2}}_{\rightarrow 0_{+}}\right) \rightarrow -\infty$$

$$x \xrightarrow{>} +\infty \qquad In\left(\underbrace{x^{3} + x^{2}}_{\rightarrow +\infty}\right) \rightarrow +\infty$$

1)
$$2x+4>0 \implies x>-2$$

2)
$$\ln(2x+4)=0 \Rightarrow 2x+4=1 \Rightarrow x=-1,5$$

$$\Rightarrow D_k = -2; \infty \left\{ -1,5 \right\}$$

k hat doppelte Nullstelle bei $x = 0 \implies Bild b$

k' hat VZW bei x = 0 ⇒ Bild c

h hat Definitionslücke (Polstelle) bei $x = 0 \Rightarrow Bild a$

$$x \to +\infty$$
 $\underbrace{\frac{\overset{\longrightarrow}{x^2}}{\overset{\times}{x^2}}}_{\overset{\longrightarrow}{x^2}} \to +\infty$ weil Potenzfunktion überwiegt

23.1

Nullstellen:
$$x_1 = -1$$
 $x_2 = 3$

$$x \to +\infty$$
 $\underbrace{\left(x^2 - 2x - 3\right)}_{\to +\infty} \underbrace{e^{-0.5x}}_{\to 0_+} \to 0$ weil e-Funktion überwiegt $x \to -\infty$ $\underbrace{\left(x^2 - 2x - 3\right)}_{\to +\infty} \underbrace{e^{-0.5x}}_{\to +\infty} \to +\infty$

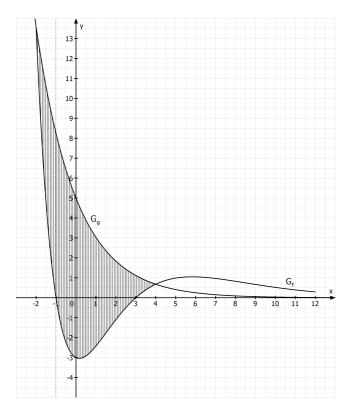
$$x \to -\infty$$
 $(x^2 - 2x - 3) \underbrace{e^{-0.5x}}_{\to +\infty} \to +\infty$

$$f'(x) = (2x-2)e^{-0.5x} + (x^2 - 2x - 3)e^{-0.5x} \cdot (-0.5) = (-0.5x^2 + 3x - 0.5)e^{-0.5x}$$

$$f'(x) = 0 \implies -0.5x^2 + 3x - 0.5 = 0 \quad \text{(da } e^{-0.5x} \text{ immer positiv)} \implies x_1 \approx 5.83 \quad x_2 \approx 0.17$$
 Skizze von f': $e^{-0.5x}$ immer positiv

Skizze von $(-0.5x^2 + 3x - 0.5)$:

$$\Rightarrow$$
 x₁ = 5,83 HOP HOP(5,83/1,05) x₂ = 0,17 TIP TIP(0,17/-3,04)



23.4

$$f(x) = g(x) \implies (x^{2} - 2x - 3)e^{-0.5x} = 5e^{-0.5x} \implies x^{2} - 2x - 3 = 5 \implies x^{2} - 2x - 8 = 0$$

$$\implies x_{1} = 4 \quad SP_{1}(4/0.68) \qquad x_{2} = -2 \quad SP_{2}(-2/13.59)$$

23.5
$$F'(x) = -2e^{-0.5x} \cdot (-0.5)(x+1)^2 + (-2e^{-0.5x}) \cdot 2(x+1) = e^{-0.5x} \left[\left(x+1 \right)^2 - 4(x+1) \right] =$$
$$= e^{-0.5x} \left[x^2 + 2x + 1 - 4x - 4 \right] = e^{-0.5x} \left[x^2 - 2x - 3 \right] = f(x)$$

23.6 A =
$$\int_{-2}^{4} (g(x) - f(x)) dx = \left[-10e^{-0.5x} - \left(-2e^{-0.5x}(x+1)^2 \right) \right]_{-2}^{4} \approx 5,41 - (-21,75) \approx 27,16$$

24
$$D_{k} =]-2;0[\cup]1;\infty[$$
Senkrechte Asymptoten: $x=-2$ $x=0$ $x=1$

25
$$A = \int_{-1}^{2} g(x) dx = \left[\frac{1}{4} x^2 + x + 2 \cdot \ln |x - 3| \right]_{-1}^{2} = 3 - \left(-\frac{3}{4} + 2 \ln 4 \right) = 3,75 - 2 \ln 4 \approx 0,977$$

$$x \xrightarrow{>} -1 \quad \ln \left(\underbrace{2 \cdot g(x)}_{\to 0_{+}} \right) \xrightarrow{>} -\infty$$

$$x \xrightarrow{>} 2 \quad \ln \left(\underbrace{2 \cdot g(x)}_{\to 0_{+}} \right) \xrightarrow{>} -\infty$$

$$x \xrightarrow{>} 3 \quad \ln \left(\underbrace{2 \cdot g(x)}_{+\infty} \right) \xrightarrow{>} +\infty$$

$$x \xrightarrow{>} +\infty \quad \ln \left(\underbrace{2 \cdot g(x)}_{\to +\infty} \right) \xrightarrow{>} +\infty$$

h'(x) =
$$\frac{1}{2 \cdot g(x)} \cdot g'(x)$$

⇒ G_h hat auch bei x = 1 HOP und bei x = 5 TIP
⇒ HOP(1/0) TIP(5/In9)
⇒ $W_h =]-\infty;0] \cup [In9;\infty[=\mathbb{R} \setminus]0;In9[$

27.1

$$h(x) = 0 \implies -x^{2} + 2x = 1 \implies x^{2} - 2x + 1 = 0 \implies x = 1$$

$$x \xrightarrow{>} 0 \qquad \ln\left(\underbrace{-x^{2} + 2x}_{\rightarrow 0_{+}}\right) \longrightarrow -\infty$$

$$x \xrightarrow{<} 2 \qquad \ln\left(\underbrace{-x^{2} + 2x}_{\rightarrow 0_{+}}\right) \longrightarrow -\infty$$

$$h'(x) = \frac{1}{-x^2 + 2x} \cdot \left(-2x + 2\right) = \frac{-2x + 2}{-x^2 + 2x}$$

$$h'(x) = 0 \implies -2x + 2 = 0 \implies x = 1$$
Skizze von h': $-x^2 + 2x$ in D_h immer positiv
Skizze von $\left(-2x + 2\right)$:

$$\Rightarrow G_h \text{ sms in }]0;1] \qquad G_h \text{ smf in } [1;2[$$
$$\Rightarrow x=1 \text{ HOP } \text{ HOP}(1|0)$$

28.1
$$f \rightarrow 2$$
 $D_f = \mathbb{R}^+$ $g \rightarrow 1$ $D_g = \mathbb{R} \setminus \{0\}$ $h \rightarrow 3$ $D_h =]1; \infty[$

Schnittstelle von 1 und 2 bestimmen $\Rightarrow x_1$ und x_2 $\Rightarrow A = \int_{x_1}^{x_2} (f(x) - g(x)) dx$ Stammfunktionen F und G bestimmen $\Rightarrow A = \left[F(x) - G(x) \right]_{x_1}^{x_2}$ "Obere minus untere Grenze"

29
$$r'(x) = q'(x) \cdot \underbrace{e^{q(x)}}_{>0} = 0 \quad \Rightarrow q'(x) = 0 \quad \Rightarrow x = 1 \quad \Rightarrow HOP(1|2)$$

$$x \to \pm \infty \quad \Rightarrow q(x) \to -\infty \quad \Rightarrow r(x) \to 0^+$$

$$\Rightarrow W_r = \left] 0; e^2 \right]$$

30.1

$$g(x)=0 \Rightarrow \frac{x^2}{x-1}=1$$
 geht nicht nach Abbildung
 \Rightarrow g hat keine Nullstellen

30.2

$$x \to 1$$
 $\Rightarrow \ln \left(\frac{x^2}{\underbrace{x-1}} \right) \to +\infty$ $x \to +\infty$ $\Rightarrow \ln \left(\frac{x^2}{\underbrace{x-1}} \right) \to +\infty$

Senkrechte Asymptote x = 1

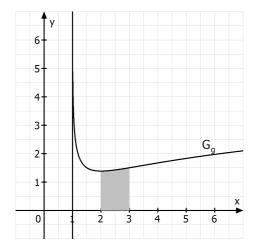
30.3

$$g'(x) = \frac{1}{\frac{x^2}{x-1}} \cdot \frac{2x \cdot (x-1) - x^2 \cdot 1}{(x-1)^2} = \frac{x-1}{x^2} \cdot \frac{x^2 - 2x}{(x-1)^2} = \frac{x-2}{x \cdot (x-1)}$$

$$g'(x) = 0 \implies x-2 = 0 \implies x = 2$$

Skizze von g': $x \cdot (x-1)$ für $x \in]1; \infty[$ immer positiv Skizze von (x-2):

$$\Rightarrow$$
 x = 2 TIP TIP(2|In(4))



$$A = \int_{2}^{3} g(x) dx = \left[-x + 2x \cdot \ln(x) - (x - 1) \cdot \ln(x - 1) \right]_{2}^{3} =$$

$$= \left(-3 + 6\ln(3) - 2\ln(2) \right) - \left(-2 + 4\ln(2) - 1 \cdot \ln(1) \right) =$$

$$= -3 + 6\ln(3) - 2\ln(2) + 2 - 4\ln(2) = -1 + 6\ln(3) - 6\ln(2) \approx 1,43$$

31.1

$$x \xrightarrow{>} -2 \implies f(x) \rightarrow 0^{+} \implies h(x) \rightarrow -\infty$$
 $x \xrightarrow{<} -2 \implies f(x) \rightarrow 0^{+} \implies h(x) \rightarrow -\infty$

31.2 Nullstellen: $x_1 = 0$ $x_2 = 2$

31.3

$$h'(x) = \frac{1}{f(x)} \cdot f'(x)$$
 $h'(x) = 0 \implies f'(x) = 0 \implies x = 0.8$

Nenner immer positiv in D_h und Vorzeichen von h'(x) entspricht dem Vorzeichen von f'(x) \Rightarrow genau ein Hochpunkt bei x = 0.8

32

a) Wahr. x = 0 ist eine Polstelle, weil keine Nullstelle des Zählers

b) Falsch.
$$x \rightarrow -\infty$$
 $\underbrace{\frac{x+1}{x+1}}_{e^x-1} \rightarrow +\infty$

33

$$F'(x) = 3 \cdot \frac{1}{x^2 + 4x + 6} \cdot (2x + 4) = \frac{6x + 12}{x^2 + 4x + 6} = f(x)$$

⇒F ist Stammfunktion von f

$$\int_{-4}^{0} f(x) dx = \left[3 \ln \left(x^2 + 4x + 6 \right) \right]_{-4}^{0} = 3 \ln(6) - 3 \ln(6) = 0$$

Die Fläche, die G_f mit der x-Achse im Bereich $\begin{bmatrix} -4;-2 \end{bmatrix}$ einschließt, ist genauso groß wie die Fläche, die G_f mit der x-Achse im Bereich $\begin{bmatrix} -2;0 \end{bmatrix}$ einschließt.

$$D_g =] -\infty; 0[$$

Nullstelle: $g(x) = 0 \implies f(x) = 1$

$$\Rightarrow \frac{-x^2 - x - 1}{x} = 1 \Rightarrow -x^2 - x - 1 = x \Rightarrow -x^2 - 2x - 1 = 0 \Rightarrow x = -1$$

34.2

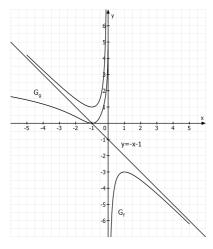
$$g'(x) = \frac{1}{\frac{-x^2 - x - 1}{x}} \cdot \frac{(-2x - 1) \cdot x - (-x^2 - x - 1) \cdot 1}{x^2} = \frac{x}{-x^2 - x - 1} \cdot \frac{-x^2 + 1}{x^2} = \frac{-x^2 + 1}{x \cdot (-x^2 - x - 1)}$$

$$g'(x) = 0$$
 $\Rightarrow -x^2 + 1 = 0$ $\Rightarrow x^2 = 1$ $\Rightarrow x_1 = -1$ $(x_2 = 1) \notin D_g$

Skizze von g^{\prime} : Nenner in D_g immer positiv

Skizze von $\left(-x^2+1\right)$:

$$\Rightarrow$$
 x = -1 TIP TIP $\left(-1|0\right)$



$$35.1 \xrightarrow{x \to -3} \underbrace{2x}_{\rightarrow -6} \underbrace{ln(x+3)}_{\rightarrow -\infty} \rightarrow +\infty \qquad x \to +\infty \qquad \underbrace{2x}_{\rightarrow +\infty} \underbrace{ln(x+3)}_{\rightarrow +\infty} \rightarrow +\infty$$

35.2

$$2x \cdot \ln(x+3) = 0$$

$$\Rightarrow 2x = 0 \Rightarrow x_1 = 0 \qquad \ln(x+3) = 0 \Rightarrow x+3=1 \Rightarrow x=-2$$

36.1
$$f(x) = 0 \Rightarrow \left(\ln(x)\right)^{2} = 1 \Rightarrow \ln(x) = -1 \Rightarrow x_{1} = e^{-1} \quad \ln(x) = 1 \Rightarrow x_{2} = e^{1} = e^{1}$$

$$x \to 0 \qquad -1 + \left(\underbrace{\ln(x)}_{\to -\infty}\right)^{2} \to +\infty \qquad x \to +\infty \qquad -1 + \left(\underbrace{\ln(x)}_{\to +\infty}\right)^{2} \to +\infty$$

Senkrechte Asymptote: x = 0

$$f'(x) = 2 \cdot \ln(x) \cdot \frac{1}{x} = \frac{2 \ln(x)}{x}$$

$$f'(x) = 0 \implies 2 \ln(x) = 0 \implies \ln(x) = 0 \implies x = 1$$

Skizze von f': Nenner in D_f immer positiv Skizze von 2ln(x):

$$G_f$$
 smf in $]0;1]$ G_f sms in $[1;\infty[$ $\Rightarrow x=1$ ist absoluter Tiefpunkt, weil keine weitere Änderung des Monotonieverhaltens vorliegt $\Rightarrow TIP(1|-1)$

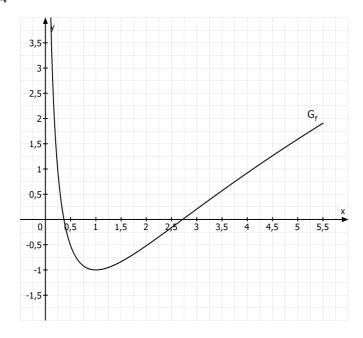
$$\Rightarrow$$
 W_f = $[-1; \infty[$

$$f''(x) = \frac{2 \cdot \frac{1}{x} \cdot x - 2 \ln(x) \cdot 1}{x^2} = \frac{2 - 2 \ln(x)}{x^2}$$

$$f''(x) = 0 \implies 2 - 2 \ln(x) = 0 \implies \ln(x) = 1 \implies x = e$$
Skizze von f'' : Nenner immer positiv
Skizze von $(2 - 2 \ln(x))$:

⇒x=e WP WP(e|0)
Wendetangente: y=mx+t

$$m=f^{/}(e)=\frac{2ln(e)}{e}=\frac{2}{e}$$
⇒0=\frac{2}{e}\cdot e+t ⇒t=-2
⇒y=\frac{2}{e}x-2



37.1
$$f(x) = \frac{1}{x+1} + \ln(x+1)$$
 1) $x+1 \neq 0$ 2) $x+1>0 \implies x>-1 \implies D_f = -1; \infty$

$$f'(x) = \frac{-1}{(x+1)^2} + \frac{1}{x+1} = \frac{-1}{(x+1)^2} + \frac{x+1}{(x+1)^2} = \frac{x}{(x+1)^2}$$

$$f'(x)=0 \Rightarrow x=0$$

Skizze von f[/]: Nenner immer positiv

Skizze von x:

$$\Rightarrow x = 0 \text{ TIP TIP}(0|1)$$

$$\Rightarrow G_f \text{ ist smf in } -1;0 \qquad G_f \text{ ist sms in } 0;\infty[$$

37.3

$$f''(x) = \frac{1(x+1)^2 - x \cdot 2(x+1)}{(x+1)^4} = \frac{x+1-2x}{(x+1)^3} = \frac{1-x}{(x+1)^3}$$

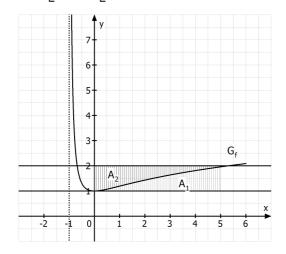
$$f^{\prime\prime}(x)=0 \Rightarrow 1-x=0 \Rightarrow x=1$$

Skizze von $f^{\prime\prime}$: Nenner in D_f immer positiv

Skizze Zähler:

$$\Rightarrow$$
 x=1 WP WP(1|1,19)

37.4 W_f =
$$[1,19;\infty]$$

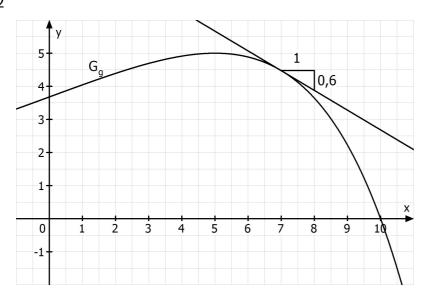


37.5
$$\int_{0}^{5} f(x) dx = \left[\left(x + 2 \right) \ln \left(x + 1 \right) - x \right]_{0}^{5} = 7 \cdot \ln(6) - 5 - (2 \cdot \ln(1) - 0) = 7 \ln(6) - 5 \approx 7,54$$

37.6 Markierung siehe 37.4

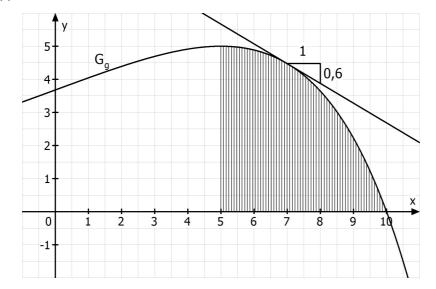
$$A_1 = \int_0^5 (f(x) - 1) dx = [F(x) - x]_0^5 = 7,54 - 5 = 2,54$$

38.1 a)
$$g(10)=0$$
 b) $g^{//}(5)<0$



$$m = \frac{\Delta y}{\Delta x} \approx -\frac{0.6}{1} \approx -0.6$$

$$\begin{split} &G\!\left(x\right)\!=\!-\!\left(5x\!-\!75\right)\!\cdot\!e^{-0,2x-1}\\ &G'\!\left(x\right)\!=\!-5\!\cdot\!e^{-0,2x-1}\!+\!\left(\!-5x\!+\!75\right)\!\cdot\!e^{-0,2x-1}\cdot\!\left(0,2\right)\!=\!e^{-0,2x-1}\cdot\!\left(\!-5\!-\!x\!+\!15\right)\!=\\ &=e^{-0,2x-1}\cdot\!\left(\!10\!-\!x\right)\!=\!-\!\left(x\!-\!10\right)\!\cdot\!e^{-0,2x-1}\!=\!g\!\left(x\right) \end{split}$$



$$G(5) = 50 \cdot e^{0} = 50$$
 $G(10) = 25 \cdot e^{1}$
 $A = G(10) - G(5) = 25e - 50$

39.1
$$x = -2$$
 HOP $x = 2$ TIP

39.2 Größtes Gefälle von
$$G_F$$
 für $x = 0$ mit $f'(0) = -2$

39.3 Schiefe Asymptote mit der Steigung m = 1, da
$$x \rightarrow \infty \implies f'(x) \rightarrow 1$$

40

$$x \to \infty \quad \underbrace{\frac{1}{x}}_{\to 0^{+}} \cdot \underbrace{\ln(x+1)}_{\to \infty} \to 0^{+} \quad \frac{1}{x} \text{ überwiegt}$$

$$x \to -1 \quad \underbrace{\frac{1}{x}}_{\to -1} \cdot \underbrace{\ln(x+1)}_{x+1} \to +\infty$$

$$x \to 0 \qquad 2,25 \cdot \left[\underbrace{\ln(x)}_{\to -\infty} \right]^{2} \to +\infty$$

$$x \to \infty \qquad 2,25 \cdot \left[\underbrace{\ln(x)}_{\to +\infty} \right]^{2} \to +\infty$$

$$h'(x) = 2,25 \cdot 2\ln(x) \cdot \frac{1}{x} = \frac{4,5 \cdot \ln(x)}{x}$$
$$h'(x) = 0 \implies 4,5 \cdot \ln(x) = 0 \implies x = 1$$

Skizze von h^{\prime} : Nenner in D_h immer positiv

Skizze Zähler:

$$\Rightarrow x=1 \text{ TIP } \text{TIP} \Big(1|0\Big)$$

$$h''(x) = \frac{4.5 \cdot \frac{1}{x} \cdot x - 4.5 \cdot \ln(x) \cdot 1}{x^2} = \frac{4.5 - 4.5 \cdot \ln(x)}{x^2}$$

$$h''(x) = 0 \Rightarrow 4.5 - 4.5 \cdot \ln(x) = 0 \Rightarrow 4.5 \cdot \ln(x) = 4.5 \Rightarrow \ln(x) = 1 \Rightarrow x = e$$

$$x = e \text{ ist eine einfache Nullstelle von } h'' \Rightarrow VZW \Rightarrow x = e \text{ WP } \Rightarrow WP(e|2.25)$$

42.1

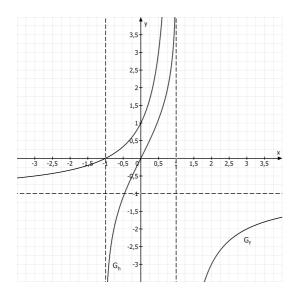
$$x \xrightarrow{>} -1 \quad \ln \left(\underbrace{f(x)}_{\to 0^+} \right) \longrightarrow -\infty \qquad x \xrightarrow{<} \quad \ln \left(\underbrace{f(x)}_{\to +\infty} \right) \longrightarrow +\infty$$

Gleichungen der Asymptoten: x = -1 x = 1

42.2

$$h'(x) = \frac{1}{\frac{x+1}{1-x}} \cdot \frac{1 \cdot (1-x) - (x+1) \cdot (-1)}{(1-x)^2} = \frac{1-x}{x+1} \cdot \frac{1-x+x+1}{(1-x)^2} = \frac{2}{(x+1)(1-x)} = \frac{2}{1-x^2}$$

 $h'(x)=0 \implies 2=0$ (f) $\implies h'$ hat keine Nullstelle $\implies G_h$ hat keine Extrempunkte



43.1 f(x) = 0 $\Rightarrow 1) \ln(0,5x) = 0 \Rightarrow 0,5x = 1 \Rightarrow x = 2$ $\Rightarrow 2) 1,5 \cdot \ln(0,5x) + 1 = 0 \Rightarrow \ln(0,5x) = -\frac{2}{3} \Rightarrow 0,5x = e^{-\frac{2}{3}} \Rightarrow x = 2e^{-\frac{2}{3}}$ $x \to 0 \qquad -4 \cdot \ln(0,5x) \underbrace{\left(1,5 \cdot \ln(0,5x) + 1\right)}_{\rightarrow -\infty} \rightarrow -\infty$ $x \to \infty \qquad -4 \cdot \ln(0,5x) \underbrace{\left(1,5 \cdot \ln(0,5x) + 1\right)}_{\rightarrow +\infty} \rightarrow -\infty$

43.2

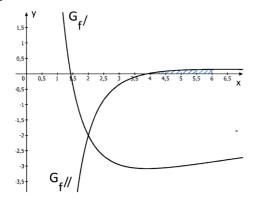
$$\begin{aligned} &G_f \text{ sms in } \boxed{0;2e^{-\frac{1}{3}}} \end{aligned} \qquad G_f \text{ smf in } \boxed{2e^{-\frac{1}{3}};\infty} \boxed{\\ \Rightarrow f \Biggl(2e^{-\frac{1}{3}}\Biggr) = \frac{4}{3} \cdot \left(\frac{3}{2} \cdot \left(-\frac{1}{3}\right) + 1\right) = \frac{4}{3} \cdot \frac{1}{2} = \frac{2}{3} \qquad \Rightarrow H \Biggl(2e^{-\frac{1}{3}} \left|\frac{2}{3}\right| \text{ HOP} \end{aligned}$$

Sogar absoluter HOP, da nur ein Monotoniewechsel im Definitionsbereich

G_f rechtsgekrümmt in
$$\left[0; 2e^{\frac{2}{3}}\right]$$
 G_f linksgekrümmt in $\left[2e^{\frac{2}{3}}; \infty\right]$

$$\Rightarrow da \ x = 2e^{\frac{2}{3}} \text{ einzige Nullstelle von f}^{//} \text{ ist, ist } x = 2e^{\frac{2}{3}} \text{ Wendestelle}$$

$$\Rightarrow f\left(2e^{\frac{2}{3}}\right) = -4 \cdot \frac{2}{3} \cdot \left(\frac{3}{2} \cdot \frac{2}{3} + 1\right) = -\frac{8}{3} \cdot 2 = -\frac{16}{3} \Rightarrow WP\left(2e^{\frac{2}{3}}\right) - \frac{16}{3}$$



$$\int_{4}^{6} f''(x) dx = \left[f'(x) \right]_{4}^{6} = \frac{-12 \cdot \ln(3) - 4}{6} - \frac{-12 \cdot \ln(2) - 4}{4} \approx 0,2156$$

$$\begin{split} y &= mx + t \\ m &= f'\left(2\right) = -2 \quad y = f\left(2\right) = 0 \implies P(2 \mid 0) \\ \Rightarrow 0 &= -2 \cdot 2 + t \quad \Rightarrow t = 4 \quad \Rightarrow t_{_P}\left(x\right) = -2x + 4 \end{split}$$

43.5
$$t_H(x) = \frac{2}{3}$$

